The experimental knowledge on the role of oxidative stress,and beneficial and detrimental effects of plant derived antioxidants in male and female animal reproduction are reviewed in this article.Free radical-induced ...The experimental knowledge on the role of oxidative stress,and beneficial and detrimental effects of plant derived antioxidants in male and female animal reproduction are reviewed in this article.Free radical-induced oxidative stress in animal reproduction causes great loss to livestock industry.Antioxidant therapy has been implicated to be effective in preventing diseases resulted from oxidative stress.Considering the advantages of lower side effects of natural antioxidants than those of synthetic antioxidants,plants or their extracts have been extensively utilized in animals.Although many advances have been gained on application of plant derived antioxidants in alleviating oxidative stress,debatable issues still exist.Because many opposite effects were observed even using plant extracts containing similar bioactive substances in the same animal species.Therefore,plant derived antioxidants,like free radicals,are "double-edged swords" in animal reproduction,representing that they may exhibit beneficial or detrimental effects in animal reproduction,including spermatogenesis,semen functions,estrous cycles,ovulation,ovary functions,endometrium,embryo development,and pregnancy.Besides dose-dependent manner as an explanation of plant extracts' dual function,future studies are needed to investigate the mechanism of double-edged actions of plant derived antioxidants in different animal reproduction systems.展开更多
Background: Lycopene(LYC) is a natural carotenoid with powerful reactive oxygen species(ROS) scavenging activities. The aim of this study was to investigate if lycopene has the ability to reverse ROS-mediated alt...Background: Lycopene(LYC) is a natural carotenoid with powerful reactive oxygen species(ROS) scavenging activities. The aim of this study was to investigate if lycopene has the ability to reverse ROS-mediated alterations to the motility, viability and intracellular antioxidant profile of bovine spermatozoa subjected to ferrous ascorbate(Fe AA). Spermatozoa were washed out of fresh bovine semen, suspended in 2.9 % sodium citrate and subjected to LYC treatment(0.25, 0.5, 1 or 2 mmol/L) in the presence or absence of Fe AA(150 μmol/L Fe SO4 and 750 μmol/L ascorbic acid) during a 6 h in vitro culture. Spermatozoa motion characteristics were assessed using the Sperm Vision?computer-aided sperm analysis(CASA) system. Cell viability was examined with the metabolic activity(MTT) assay,ROS generation was quantified via luminometry and the nitroblue-tetrazolium(NBT) test was applied to quantify the intracellular superoxide formation. Cell lysates were prepared at the end of the in vitro culture to investigate the intracellular activity of superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GPx) as well as the concentrations of glutathione(GSH) and malondialdehyde(MDA).Results: FeA A treatment led to a reduced spermatozoa motility(P 〈 0.001), viability(P 〈 0.001) and a decline of the antioxidant capacity of spermatozoa(P 〈 0.001) but increased the ROS generation(P 〈 0.001), superoxide production(P 〈 0.001) and lipid peroxidation(P 〈 0.001). LYC administration resulted in a preservation of the spermatozoa motion parameters(P 〈 0.001), mitochondrial activity(P 〈 0.001) and antioxidant characteristics(P 〈 0.001 with respect to SOD;P 〈 0.01 in relation to CAT; P 〈 0.05 as for GPx and GSH) with a concentration range of 1 and 2 mmol/L LYC revealed to be the most effective.Conclusions: Our results suggest that LYC exhibits significant ROS-scavenging and antioxidant properties which may prevent spermatozoa alterations caused by oxidative stress, and preserve the functionality of male reproductive cells.展开更多
The imbalance of reactive oxygen species and antioxidants is considered to be an important factor in the cellular injury of the inner ear. At present, great attention has been placed on oxidative stress. However,littl...The imbalance of reactive oxygen species and antioxidants is considered to be an important factor in the cellular injury of the inner ear. At present, great attention has been placed on oxidative stress. However,little is known about fighting oxidative stress. In the current study, we evaluated antioxidant-induced cochlear damage by applying several different additional antioxidants. To determine whether excessive antioxidants can cause damage to cochlear cells, we treated cochlear explants with 50 m M M40403, a superoxide dismutase mimetic, 50 m M coenzyme Q-10, a vitamin-like antioxidant, or 50 m M d-methionine, an essential amino acid and the important antioxidant glutathione for 48 h. Control cochlear explants without the antioxidant treatment maintained their normal structures after incubation in the standard serum-free medium for 48 h, indicating the maintenance of the inherent oxidative and antioxidant balance in these cochlear explants. In contrast, M40403 and coenzyme Q-10-treated cochlear explants displayed significant hair cell damage together with slight damage to the auditory nerve fibers.Moreover, d-methiodine-treated explants exhibited severe damage to the surface structure of hair cells and the complete loss of the spiral ganglion neurons and their peripheral fibers. These results indicate that excessive antioxidants are detrimental to cochlear cells, suggesting that inappropriate dosages of antioxidant treatments can interrupt the balance of the inherent oxidative and antioxidant capacity in the cell.展开更多
A hydroponic study was conducted to determine the effects of selenium(Se: 0, 3, 6 μmol L^-1) on senescence-related oxidative stress in garlic plants grown under two sulfur(S) levels. We evaluated the yields of p...A hydroponic study was conducted to determine the effects of selenium(Se: 0, 3, 6 μmol L^-1) on senescence-related oxidative stress in garlic plants grown under two sulfur(S) levels. We evaluated the yields of plants harvested at 160 and 200 days after sowing. Plants grown under a low Se dose(0.3 μmol L^-1) at low S level showed higher yields(12.0% increase in fresh weight yield, 13.7% increase in dry weight yield) than the controls, despite a decrease in chlorophyll concentration. Compared with control plants, the Se-treated plants showed lower levels of lipid peroxidation. The Se-treated plants also showed higher activities of glut athione peroxidase and catalase, but lower superoxide dismutase activities. Changes in Fv/Fm values and proline contents were affected more strongly by S than by Se. On the basis of our results, we can conclude that Se plays a key role in the antioxidant systems in garlic seedlings. It delays senescence by alleviating the peroxide stress, but it can be toxic at high levels. A high S level may increase tolerance to high Se concentrations through reducing Se accumulation in plants.展开更多
Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric o...Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.展开更多
BACKGROUND: Oxidative stress is recognized as a pivotal effector of several pathogenic processes, including acute pancreatitis. Reactive oxygen species not just cause damage on the main cellular components, but also ...BACKGROUND: Oxidative stress is recognized as a pivotal effector of several pathogenic processes, including acute pancreatitis. Reactive oxygen species not just cause damage on the main cellular components, but also influence the expression of antioxidant system genes. Antioxidant molecules, such as melatonin, could be good candidates for the treatment of this multidimensional disease. The present study was to evaluate the chemopreventive effect of melatonin in a rat model of ceruleininduced acute pancreatitis.METHODS: Four subcutaneous injections of cerulein(20 μg/kg body weight) were given to Wistar rats at two hours intervals;melatonin was injected intraperitoneally(25 mg/kg body weight)30 minutes before each injection of cerulein. Lipid peroxidation,protein oxidation(carbonyl groups), total antioxidant status,and glutathione peroxidase activity were determined in pancreatic tissue using commercial kits.RESULTS: The chemopreventive administration of melatonin caused a reduction in lipid peroxidation and protein oxidation due to injections of cerulein. Additionally, melatonin treatment was also able to revert glutathione peroxidase activity and total antioxidant status near to control levels, suggesting that melatonin could prevent from oxidative phenomena in the pancreas, such as lipid peroxidation and protein oxidation,and could stimulate, directly or indirectly, the expression of antioxidant enzymes.CONCLUSION: Melatonin, a polyvalent antioxidant, protected the pancreatic damage via the decrease of oxidative stress andincrease of the activities of antioxidant enzymes in ceruleininduced acute pancreatitis.展开更多
Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement o...Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to(1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress,(2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress,(3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals.Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant reserves.Some phytochemicals, such as various types of flavonoids and related compounds, were shown to be beneficial in chronic heat-stressed poultry, but were less or not effective in non-heat-stressed counterparts. This supports the contention that antioxidant phytochemicals have potential under challenging conditions. Though substantial progress has been made in our understanding of the association between heat stress and oxidative stress, the means by which phytochemicals can alleviate oxidative stress have been sparsely explored.展开更多
Farmers are frequently exposed to ultraviolet(UV) radiation which causes various diseases by inducing oxidative stress.This study aimed to assess the effects of sunblock on oxidative stress in the body.Eighty-seven ...Farmers are frequently exposed to ultraviolet(UV) radiation which causes various diseases by inducing oxidative stress.This study aimed to assess the effects of sunblock on oxidative stress in the body.Eighty-seven farmers were divided into two groups:those who wore sunblock for five days and those who did not.The total antioxidant capacity(TAC) in urine,which is an antioxidant indicator,and 8-hydroxy-2-deoxyguanosine(8-OHdG) levels in urine,an oxidative stress indicator,were measured.The urinary TAC of sunblock users was significantly higher than that of non-users,but urinary 8-OHdG levels were not significantly different.Even after adjustment for potential confounders,urinary TAC was found to be markedly increased with sunblock usage.These results suggest that sunblock is effective in preventing oxidative stress among farmers.In addition,they show that urinary TAC can be used as a good effect marker of oxidative stress caused by UV exposure.展开更多
AIM: To investigate the effect of pomegranate juice(PJ) intake on overall oxidation status in retinas of diabetic rats.METHODS: Twenty-seven rats were divided into four groups as control(CO), diabetic(DM), con...AIM: To investigate the effect of pomegranate juice(PJ) intake on overall oxidation status in retinas of diabetic rats.METHODS: Twenty-seven rats were divided into four groups as control(CO), diabetic(DM), control treated with PJ(CO-PJ), and diabetic treated with PJ(DM-PJ).The retina tissues were used to determine 8-hydroxy-2'-deoxyguanosine(8 OHd G), malondialdehyde(MDA), reduced glutathione(GSH) levels, and the enzyme activities of superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px). RESULTS: The levels of 8 OHdG and MDA were significantly increased in the retina of DM group compared to CO group(P=0.001, P〈0.001 respectively). Both 8 OHd G and MDA levels were decreased in PJ-DM group compared to DM group(P=0.004, P〈0.001 respectively). The activities of antioxidant enzymes GSH, SOD, and GDH-Px were significantly decreased in the retina of DM group compared to CO group(P≤0.01). GSH and GSH-Px activities were higher in PJ-DM group compared with DM group(P=0.010, P=0.042, respectively) but SOD activity was not statistically different(P=0.938). CONCLUSION: PJ intake is found to be effective in decreasing oxidative end products, and in increasing the activities of antioxidant enzymes in diabetic retinas of rats, which suggests it may be effective against oxidative stress in diabetic retinas.展开更多
Spermidine(Spd) is known to be involved in the regulation of plant responses to chilling stress and counteract the adverse effect of stress conditions.Antioxidant activities,endogenous hormones and ultrastructure ch...Spermidine(Spd) is known to be involved in the regulation of plant responses to chilling stress and counteract the adverse effect of stress conditions.Antioxidant activities,endogenous hormones and ultrastructure change under chilling stress were investigated in indica-japonica hybrid rice seedlings.12-d-old seedlings were subjected to exogenous Spd(1 mmol L^(-1)) and then a chilling stress(6℃,4 d) was induced,followed by a subsequent recovery(25℃,4 d).Results showed that malondialdehyde(MDA) and proline content were enhanced significantly,whereas shoot fresh and dry weights decreased during chilling stress and after recovery;chlorophyll content of chilling-stressed seedlings increased slightly but declined after recovery;additionally,total soluble sugar,sucrose,fructose and starch contents increased significantly during chilling stress,and only soluble sugar and fructose contents were observed in increase after recovery;chilling stress-induced increases in superoxide dismutase(SOD),peroxidase(POD) and catalase(CAT) activities,but declined after recovery,and the level of ascorbate peroxidase was lower during chilling stress and after recovery;however,endogenous indole-3-acetic acid(IAA),zeatin riboside(ZR),gibberellic acid(GA_3),and abscisic acid(ABA) levels were induced decreased compared with Spd pretreatment.The microscopic analysis revealed that chilling stress-induced destruction of the chloroplast envelope during chilling stress and increased the number of plastoglobuli along with aberrations in thylakoid membranes after recovery.In contrast,exogenous Spd protected rice seedlings from chilling-induced injuries in terms of lower malondialdehyde,proline and carbohydrates accumulation coupled with increased endogenous hormones metabolism.After recovery,Spd pretreatment chilling-exposed seedlings showed higher activities of antioxidant enzymes and normal physiological function of chloroplasts.These results suggest that Spd could promote effectively chilling tolerance which might be largely attributable to the integrity of cell structure and normal metabolism of endogenous hormones in indica-japonica hybrid rice seedlings.展开更多
Objective: Infectious diseases such as typhoid fever lead to the formation of free radicals which can damage the body. Many medicinal plants have antioxidant molecules that neutralize free radicals. The present work e...Objective: Infectious diseases such as typhoid fever lead to the formation of free radicals which can damage the body. Many medicinal plants have antioxidant molecules that neutralize free radicals. The present work evaluated the antioxidant activity and histopathological effects of the dichloromethane fraction of Dichrocephala integrifolia in Salmonella typhi-infected rats.Methods: The S. typhi-infected rats concurrently received daily doses of D. integrifolia extract at doses of 25, 50 and 100 mg/kg body weight or ciprofloxacin(5 mg/kg body weight) for 15 days. Body temperature was measured daily during infection and treatment periods. At the end of treatment period, the animals were sacrificed and biological responses including hematological parameters, superoxide dismutase and catalase activities, and glutathione, malondialdehyde and nitric oxide concentrations were evaluated.Results: The elevated body temperature induced by infection was significantly decreased in animals treated with 25, 50 or 100 mg/kg of the extract. Platelet levels decreased slightly in infected rats, while treatment with the dichloromethane fraction of D. integrifolia significantly increased platelet levels;this response was greater than that elicited by ciprofloxacin. The doses of 50 and 100 mg/kg of the dichloromethane fraction of D. integrifolia notably decreased monocyte and neutrophil values. Activity of superoxide dismutase and catalase and levels of glutathione in the tissues of treated animals were increased significantly(P < 0.01), while malondialdehyde and nitric oxide levels were significantly decreased(P < 0.01), following treatment with the dichloromethane fraction of D. integrifolia.Conclusion: The results of this study show that the dichloromethane fraction of D. integrifolia has protective effects against a series of pathological conditions initiated by oxidation and tissue damage in the course of a S. typhi infection.展开更多
Objective:To investigate the effects of Heijiangdan Ointment(黑绛丹膏,HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.Methods:Female Wistar mice with grade 4 radiation dermatitis i...Objective:To investigate the effects of Heijiangdan Ointment(黑绛丹膏,HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.Methods:Female Wistar mice with grade 4 radiation dermatitis induced by ^(60)Co γ-rays were randomly divided into four groups(n=12 per group);the HJD-treated,recombinant human epidermal growth factor(rhEGF)-treated,Trolox-treated,and untreated groups,along with a negative control group.On the 11 th and 21 st days after treatment,6 mice in each group were chosen for evaluation.The levels of superoxide dismutase(SOD),malondialdehyde(MDA),and lactate dehydrogenase(LDH) were detected using spectrophotometric methods.The fibroblast mitochondria were observed by transmission electron microscopy(TEM).The expressions of fibroblast growth factor 2(FGF-2) and transforming growth factor β1(TGF-β1) were analyzed by western blot.Results:Compared with the untreated group,the levels of SOD,MDA and LDH,on the 11 th and 21 st days after treatment showed significant difference(P〈0.05).TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured,while in the HJD group,the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed.The expressions of FGF-2 and TGF-β1 increased in the untreated group compared with the negative control group(P〈0.05).After treatment,the expression of FGF-2,rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group(P〈0.05),or compared with the negative control group(P〈0.05).The expression of TGF-β1 showed significant difference between untreated and negative control groups(P〈0.05).HJD and Trolox increased the level of TGF-β1 and the difference was marked as compared with the untreated and negative control groups(P〈0.05).Conclusion:HJD relieves oxidative stress-induced injury,increases the antioxidant activity,mitigates the fibroblast mitochondrial damage,up-regulates the expression of growth factor,and promotes mitochondrial repair in mice.展开更多
A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that h...A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein(HSP) responses in various organs of control(aroused)and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90 a was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control(P 〈 0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu–Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle(P 〈 0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor(P 〈 0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies.展开更多
Intervertebral disc degeneration(IVDD)is commonly caused by imbalanced oxygen metabolism-triggered inflammation.Overcoming the shortcomings of antioxidants in IVDD treatment,including instability and the lack of targe...Intervertebral disc degeneration(IVDD)is commonly caused by imbalanced oxygen metabolism-triggered inflammation.Overcoming the shortcomings of antioxidants in IVDD treatment,including instability and the lack of targeting,remains challenging.Microfluidic and surface modification technologies were combined to graft chitosan nanoparticles encapsulated with strong reductive black phosphorus quantum dots(BPQDs)onto GelMA microspheres via amide bonds to construct oxygen metabolism-balanced engineered hydrogel microspheres(GM@CS-BP),which attenuate extracellular acidosis in nucleus pulposus(NP),block the inflammatory cascade,reduce matrix metalloproteinase expression(MMP),and remodel the extracellular matrix(ECM)in intervertebral discs(IVDs).The GM@CS-BP microspheres reduce H_(2)O_(2) intensity by 229%.Chemical grafting and electrostatic attraction increase the encapsulation rate of BPQDs by 167%and maintain stable release for 21 days,demonstrating the antioxidant properties and sustained modulation of the BPQDs.After the GM@CS-BP treatment,western blotting revealed decreased acid-sensitive ion channel-3 and inflammatory factors.Histological staining in an 8-week IVDD model confirmed the regeneration of NP.GM@CS-BP microspheres therefore maintain a balance between ECM synthesis and degradation by regulating the positive feedback between imbalanced oxygen metabolism in IVDs and inflammation.This study provides an in-depth interpretation of the mechanisms underlying the antioxidation of BPQDs and a new approach for IVDD treatment.展开更多
Objective: To evaluate the enzymatic and non-enzymatic antioxidants of leaf extract from Alpinia purpurata. Methods: One gram of fresh leaf of Alpinia purpurata was grinded in 2 mL of 50% ethanol and centrifuged at ...Objective: To evaluate the enzymatic and non-enzymatic antioxidants of leaf extract from Alpinia purpurata. Methods: One gram of fresh leaf of Alpinia purpurata was grinded in 2 mL of 50% ethanol and centrifuged at 10,000×g at 4 ℃ for 10 min. The supernatant obtained was used within 4 h for various enzymatic antioxidants assays like superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GPx), glutathione S-transferase(GST), ascorbate oxidase, peroxidase, polyphenol oxidase(PPO) and non-enzymatic antioxidants such as vitamin C, total reduced glutathione(TRG) and lipid peroxidation(LPO). Results: The leaf extract of Alpinia purpurata possess antioxidants like vitamin C 472.92±6.80 μg/mg protein, GST 372.11±5.70 μmol of 1-chloro 2,4 dinitrobenzene(CDNB)-reduced glutathione(GSH) conjugate formed/min/mg protein, GPx 281.69±6.43 μg of glutathione oxidized/min/mg protein, peroxidases 173.12±9.40 μmol/g tissue, TRG 75.27±3.55 μg/mg protein, SOD 58.03±2.11 U/mg protein, CAT 46.70±2.35 μmol of H_2O_2 consumed/min/mg protein in high amount whereas ascorbate oxidase 17.41±2.46 U/g tissue, LPO 2.71±0.14 nmol/L of malondialdehyde formed/min/mg protein and PPO 1.14±0.11 μmol/g tissue in moderate amount. Conclusion: Alpinia purpurata has the potential to scavenge the free radicals and protect against oxidative stress causing diseases. In future, Alpinia purpurata may serve as a good pharmacotherapeutic agent.展开更多
基金supported by the Outstanding Youth Program of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (DLSYQ12008)the National Natural Science Foundation of China (31201820)
文摘The experimental knowledge on the role of oxidative stress,and beneficial and detrimental effects of plant derived antioxidants in male and female animal reproduction are reviewed in this article.Free radical-induced oxidative stress in animal reproduction causes great loss to livestock industry.Antioxidant therapy has been implicated to be effective in preventing diseases resulted from oxidative stress.Considering the advantages of lower side effects of natural antioxidants than those of synthetic antioxidants,plants or their extracts have been extensively utilized in animals.Although many advances have been gained on application of plant derived antioxidants in alleviating oxidative stress,debatable issues still exist.Because many opposite effects were observed even using plant extracts containing similar bioactive substances in the same animal species.Therefore,plant derived antioxidants,like free radicals,are "double-edged swords" in animal reproduction,representing that they may exhibit beneficial or detrimental effects in animal reproduction,including spermatogenesis,semen functions,estrous cycles,ovulation,ovary functions,endometrium,embryo development,and pregnancy.Besides dose-dependent manner as an explanation of plant extracts' dual function,future studies are needed to investigate the mechanism of double-edged actions of plant derived antioxidants in different animal reproduction systems.
基金supported by the Research Center Agro Bio Tech built in accordance with the project Building Research Centre “Agro Bio Tech” ITMS 26220220180by the VEGA Project of the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and of the Slovak Academy of Sciences no. 1/0857/14by the Slovak Research and Development Agency Grant no. APVV-0304-12
文摘Background: Lycopene(LYC) is a natural carotenoid with powerful reactive oxygen species(ROS) scavenging activities. The aim of this study was to investigate if lycopene has the ability to reverse ROS-mediated alterations to the motility, viability and intracellular antioxidant profile of bovine spermatozoa subjected to ferrous ascorbate(Fe AA). Spermatozoa were washed out of fresh bovine semen, suspended in 2.9 % sodium citrate and subjected to LYC treatment(0.25, 0.5, 1 or 2 mmol/L) in the presence or absence of Fe AA(150 μmol/L Fe SO4 and 750 μmol/L ascorbic acid) during a 6 h in vitro culture. Spermatozoa motion characteristics were assessed using the Sperm Vision?computer-aided sperm analysis(CASA) system. Cell viability was examined with the metabolic activity(MTT) assay,ROS generation was quantified via luminometry and the nitroblue-tetrazolium(NBT) test was applied to quantify the intracellular superoxide formation. Cell lysates were prepared at the end of the in vitro culture to investigate the intracellular activity of superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GPx) as well as the concentrations of glutathione(GSH) and malondialdehyde(MDA).Results: FeA A treatment led to a reduced spermatozoa motility(P 〈 0.001), viability(P 〈 0.001) and a decline of the antioxidant capacity of spermatozoa(P 〈 0.001) but increased the ROS generation(P 〈 0.001), superoxide production(P 〈 0.001) and lipid peroxidation(P 〈 0.001). LYC administration resulted in a preservation of the spermatozoa motion parameters(P 〈 0.001), mitochondrial activity(P 〈 0.001) and antioxidant characteristics(P 〈 0.001 with respect to SOD;P 〈 0.01 in relation to CAT; P 〈 0.05 as for GPx and GSH) with a concentration range of 1 and 2 mmol/L LYC revealed to be the most effective.Conclusions: Our results suggest that LYC exhibits significant ROS-scavenging and antioxidant properties which may prevent spermatozoa alterations caused by oxidative stress, and preserve the functionality of male reproductive cells.
基金supported in part by a grant from NIHR01DC014437in part by the foundation of Science and Technology Commission of Shanghai Municipality (NO 15140900900)
文摘The imbalance of reactive oxygen species and antioxidants is considered to be an important factor in the cellular injury of the inner ear. At present, great attention has been placed on oxidative stress. However,little is known about fighting oxidative stress. In the current study, we evaluated antioxidant-induced cochlear damage by applying several different additional antioxidants. To determine whether excessive antioxidants can cause damage to cochlear cells, we treated cochlear explants with 50 m M M40403, a superoxide dismutase mimetic, 50 m M coenzyme Q-10, a vitamin-like antioxidant, or 50 m M d-methionine, an essential amino acid and the important antioxidant glutathione for 48 h. Control cochlear explants without the antioxidant treatment maintained their normal structures after incubation in the standard serum-free medium for 48 h, indicating the maintenance of the inherent oxidative and antioxidant balance in these cochlear explants. In contrast, M40403 and coenzyme Q-10-treated cochlear explants displayed significant hair cell damage together with slight damage to the auditory nerve fibers.Moreover, d-methiodine-treated explants exhibited severe damage to the surface structure of hair cells and the complete loss of the spiral ganglion neurons and their peripheral fibers. These results indicate that excessive antioxidants are detrimental to cochlear cells, suggesting that inappropriate dosages of antioxidant treatments can interrupt the balance of the inherent oxidative and antioxidant capacity in the cell.
基金funded by the Agricultural Research Special Funds for Public Welfare Projects from the Ministry of Agriculture of the People’s Republic of China (200903018)
文摘A hydroponic study was conducted to determine the effects of selenium(Se: 0, 3, 6 μmol L^-1) on senescence-related oxidative stress in garlic plants grown under two sulfur(S) levels. We evaluated the yields of plants harvested at 160 and 200 days after sowing. Plants grown under a low Se dose(0.3 μmol L^-1) at low S level showed higher yields(12.0% increase in fresh weight yield, 13.7% increase in dry weight yield) than the controls, despite a decrease in chlorophyll concentration. Compared with control plants, the Se-treated plants showed lower levels of lipid peroxidation. The Se-treated plants also showed higher activities of glut athione peroxidase and catalase, but lower superoxide dismutase activities. Changes in Fv/Fm values and proline contents were affected more strongly by S than by Se. On the basis of our results, we can conclude that Se plays a key role in the antioxidant systems in garlic seedlings. It delays senescence by alleviating the peroxide stress, but it can be toxic at high levels. A high S level may increase tolerance to high Se concentrations through reducing Se accumulation in plants.
基金supported by the Special Research Foundation of Doctoral Course in Colleges and Universities of China in 2013,No.20133420110009
文摘Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.
基金supported by grants from MICINNFEDER(BFU2010-15049)Gobierno de Extremadura(Re:GRU10003)Plan of Recruitment and Training of Human Resources on Research of University of Extremadura(1076)
文摘BACKGROUND: Oxidative stress is recognized as a pivotal effector of several pathogenic processes, including acute pancreatitis. Reactive oxygen species not just cause damage on the main cellular components, but also influence the expression of antioxidant system genes. Antioxidant molecules, such as melatonin, could be good candidates for the treatment of this multidimensional disease. The present study was to evaluate the chemopreventive effect of melatonin in a rat model of ceruleininduced acute pancreatitis.METHODS: Four subcutaneous injections of cerulein(20 μg/kg body weight) were given to Wistar rats at two hours intervals;melatonin was injected intraperitoneally(25 mg/kg body weight)30 minutes before each injection of cerulein. Lipid peroxidation,protein oxidation(carbonyl groups), total antioxidant status,and glutathione peroxidase activity were determined in pancreatic tissue using commercial kits.RESULTS: The chemopreventive administration of melatonin caused a reduction in lipid peroxidation and protein oxidation due to injections of cerulein. Additionally, melatonin treatment was also able to revert glutathione peroxidase activity and total antioxidant status near to control levels, suggesting that melatonin could prevent from oxidative phenomena in the pancreas, such as lipid peroxidation and protein oxidation,and could stimulate, directly or indirectly, the expression of antioxidant enzymes.CONCLUSION: Melatonin, a polyvalent antioxidant, protected the pancreatic damage via the decrease of oxidative stress andincrease of the activities of antioxidant enzymes in ceruleininduced acute pancreatitis.
基金the Special Research Fund(BOF)of Ghent University(Belgium)for the financial support of Abdol ah Akbarian(grant number 01SF2711)
文摘Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to(1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress,(2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress,(3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals.Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant reserves.Some phytochemicals, such as various types of flavonoids and related compounds, were shown to be beneficial in chronic heat-stressed poultry, but were less or not effective in non-heat-stressed counterparts. This supports the contention that antioxidant phytochemicals have potential under challenging conditions. Though substantial progress has been made in our understanding of the association between heat stress and oxidative stress, the means by which phytochemicals can alleviate oxidative stress have been sparsely explored.
基金supported by Ministry of Agriculture,Food and Rural Affairs,Republic of Korea
文摘Farmers are frequently exposed to ultraviolet(UV) radiation which causes various diseases by inducing oxidative stress.This study aimed to assess the effects of sunblock on oxidative stress in the body.Eighty-seven farmers were divided into two groups:those who wore sunblock for five days and those who did not.The total antioxidant capacity(TAC) in urine,which is an antioxidant indicator,and 8-hydroxy-2-deoxyguanosine(8-OHdG) levels in urine,an oxidative stress indicator,were measured.The urinary TAC of sunblock users was significantly higher than that of non-users,but urinary 8-OHdG levels were not significantly different.Even after adjustment for potential confounders,urinary TAC was found to be markedly increased with sunblock usage.These results suggest that sunblock is effective in preventing oxidative stress among farmers.In addition,they show that urinary TAC can be used as a good effect marker of oxidative stress caused by UV exposure.
文摘AIM: To investigate the effect of pomegranate juice(PJ) intake on overall oxidation status in retinas of diabetic rats.METHODS: Twenty-seven rats were divided into four groups as control(CO), diabetic(DM), control treated with PJ(CO-PJ), and diabetic treated with PJ(DM-PJ).The retina tissues were used to determine 8-hydroxy-2'-deoxyguanosine(8 OHd G), malondialdehyde(MDA), reduced glutathione(GSH) levels, and the enzyme activities of superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px). RESULTS: The levels of 8 OHdG and MDA were significantly increased in the retina of DM group compared to CO group(P=0.001, P〈0.001 respectively). Both 8 OHd G and MDA levels were decreased in PJ-DM group compared to DM group(P=0.004, P〈0.001 respectively). The activities of antioxidant enzymes GSH, SOD, and GDH-Px were significantly decreased in the retina of DM group compared to CO group(P≤0.01). GSH and GSH-Px activities were higher in PJ-DM group compared with DM group(P=0.010, P=0.042, respectively) but SOD activity was not statistically different(P=0.938). CONCLUSION: PJ intake is found to be effective in decreasing oxidative end products, and in increasing the activities of antioxidant enzymes in diabetic retinas of rats, which suggests it may be effective against oxidative stress in diabetic retinas.
基金supported by grants from the the Earmarked Fund for Modern Agro-industry Technology Research System of China(CARS-01-09B)the Natural Science Foundation of Zhejiang Province,China(Y13C130013)the Special Fund for Basic Scientific Research Business of Central Public Research Institutes,Chinese Academy of Agricultural Sciences(2012RG004-2)
文摘Spermidine(Spd) is known to be involved in the regulation of plant responses to chilling stress and counteract the adverse effect of stress conditions.Antioxidant activities,endogenous hormones and ultrastructure change under chilling stress were investigated in indica-japonica hybrid rice seedlings.12-d-old seedlings were subjected to exogenous Spd(1 mmol L^(-1)) and then a chilling stress(6℃,4 d) was induced,followed by a subsequent recovery(25℃,4 d).Results showed that malondialdehyde(MDA) and proline content were enhanced significantly,whereas shoot fresh and dry weights decreased during chilling stress and after recovery;chlorophyll content of chilling-stressed seedlings increased slightly but declined after recovery;additionally,total soluble sugar,sucrose,fructose and starch contents increased significantly during chilling stress,and only soluble sugar and fructose contents were observed in increase after recovery;chilling stress-induced increases in superoxide dismutase(SOD),peroxidase(POD) and catalase(CAT) activities,but declined after recovery,and the level of ascorbate peroxidase was lower during chilling stress and after recovery;however,endogenous indole-3-acetic acid(IAA),zeatin riboside(ZR),gibberellic acid(GA_3),and abscisic acid(ABA) levels were induced decreased compared with Spd pretreatment.The microscopic analysis revealed that chilling stress-induced destruction of the chloroplast envelope during chilling stress and increased the number of plastoglobuli along with aberrations in thylakoid membranes after recovery.In contrast,exogenous Spd protected rice seedlings from chilling-induced injuries in terms of lower malondialdehyde,proline and carbohydrates accumulation coupled with increased endogenous hormones metabolism.After recovery,Spd pretreatment chilling-exposed seedlings showed higher activities of antioxidant enzymes and normal physiological function of chloroplasts.These results suggest that Spd could promote effectively chilling tolerance which might be largely attributable to the integrity of cell structure and normal metabolism of endogenous hormones in indica-japonica hybrid rice seedlings.
文摘Objective: Infectious diseases such as typhoid fever lead to the formation of free radicals which can damage the body. Many medicinal plants have antioxidant molecules that neutralize free radicals. The present work evaluated the antioxidant activity and histopathological effects of the dichloromethane fraction of Dichrocephala integrifolia in Salmonella typhi-infected rats.Methods: The S. typhi-infected rats concurrently received daily doses of D. integrifolia extract at doses of 25, 50 and 100 mg/kg body weight or ciprofloxacin(5 mg/kg body weight) for 15 days. Body temperature was measured daily during infection and treatment periods. At the end of treatment period, the animals were sacrificed and biological responses including hematological parameters, superoxide dismutase and catalase activities, and glutathione, malondialdehyde and nitric oxide concentrations were evaluated.Results: The elevated body temperature induced by infection was significantly decreased in animals treated with 25, 50 or 100 mg/kg of the extract. Platelet levels decreased slightly in infected rats, while treatment with the dichloromethane fraction of D. integrifolia significantly increased platelet levels;this response was greater than that elicited by ciprofloxacin. The doses of 50 and 100 mg/kg of the dichloromethane fraction of D. integrifolia notably decreased monocyte and neutrophil values. Activity of superoxide dismutase and catalase and levels of glutathione in the tissues of treated animals were increased significantly(P < 0.01), while malondialdehyde and nitric oxide levels were significantly decreased(P < 0.01), following treatment with the dichloromethane fraction of D. integrifolia.Conclusion: The results of this study show that the dichloromethane fraction of D. integrifolia has protective effects against a series of pathological conditions initiated by oxidation and tissue damage in the course of a S. typhi infection.
基金Supported by the National Natural Science Foundation of China(No.30973745)
文摘Objective:To investigate the effects of Heijiangdan Ointment(黑绛丹膏,HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.Methods:Female Wistar mice with grade 4 radiation dermatitis induced by ^(60)Co γ-rays were randomly divided into four groups(n=12 per group);the HJD-treated,recombinant human epidermal growth factor(rhEGF)-treated,Trolox-treated,and untreated groups,along with a negative control group.On the 11 th and 21 st days after treatment,6 mice in each group were chosen for evaluation.The levels of superoxide dismutase(SOD),malondialdehyde(MDA),and lactate dehydrogenase(LDH) were detected using spectrophotometric methods.The fibroblast mitochondria were observed by transmission electron microscopy(TEM).The expressions of fibroblast growth factor 2(FGF-2) and transforming growth factor β1(TGF-β1) were analyzed by western blot.Results:Compared with the untreated group,the levels of SOD,MDA and LDH,on the 11 th and 21 st days after treatment showed significant difference(P〈0.05).TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured,while in the HJD group,the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed.The expressions of FGF-2 and TGF-β1 increased in the untreated group compared with the negative control group(P〈0.05).After treatment,the expression of FGF-2,rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group(P〈0.05),or compared with the negative control group(P〈0.05).The expression of TGF-β1 showed significant difference between untreated and negative control groups(P〈0.05).HJD and Trolox increased the level of TGF-β1 and the difference was marked as compared with the untreated and negative control groups(P〈0.05).Conclusion:HJD relieves oxidative stress-induced injury,increases the antioxidant activity,mitigates the fibroblast mitochondrial damage,up-regulates the expression of growth factor,and promotes mitochondrial repair in mice.
基金supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Grant No. 6793)a grant from the Heart and Stroke Foundation of Canada (Grant No. G-140005874) to KBS. KBS holds the Canada Research Chair in Molecular PhysiologyCWW, KKB, and SNT all held NSERC postgraduate scholarships
文摘A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanisms that act to protect cells during primate torpor, the present study characterizes antioxidant and heat shock protein(HSP) responses in various organs of control(aroused)and torpid gray mouse lemurs, Microcebus murinus. Protein expression of HSP70 and HSP90 a was elevated to 1.26 and 1.49 fold, respectively, in brown adipose tissue during torpor as compared with control animals, whereas HSP60 in liver of torpid animals was 1.15 fold of that in control(P 〈 0.05). Among antioxidant enzymes, protein levels of thioredoxin 1 were elevated to 2.19 fold in white adipose tissue during torpor, whereas Cu–Zn superoxide dismutase 1 levels rose to 1.1 fold in skeletal muscle(P 〈 0.05). Additionally, total antioxidant capacity was increased to 1.6 fold in liver during torpor(P 〈 0.05), while remaining unchanged in the five other tissues. Overall, our data suggest that antioxidant and HSP responses are modified in a tissue-specific manner during daily torpor in gray mouse lemurs. Furthermore, our data also show that cytoprotective strategies employed during primate torpor are distinct from the strategies in rodent hibernation as reported in previous studies.
基金supported by the National Natural Science Foundation of China(81972078,82120108017,82072438,82102589,81702190)Social Development Project of Jiangsu Province(BE2021646),Standardized Diagnosis and Treatment Project of Key Diseases in Jiangsu Province(BE2015641)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20211504 and BK20170370)Suzhou Gusu Health Talent Program(GSWS2020001 and GSWS2021007)Jiangsu Innovative and Entrepreneurial Talent Program(JSSCBS20211570)Medical Health Science and Technology Innovation Program of Suzhou(SKY2022119).
文摘Intervertebral disc degeneration(IVDD)is commonly caused by imbalanced oxygen metabolism-triggered inflammation.Overcoming the shortcomings of antioxidants in IVDD treatment,including instability and the lack of targeting,remains challenging.Microfluidic and surface modification technologies were combined to graft chitosan nanoparticles encapsulated with strong reductive black phosphorus quantum dots(BPQDs)onto GelMA microspheres via amide bonds to construct oxygen metabolism-balanced engineered hydrogel microspheres(GM@CS-BP),which attenuate extracellular acidosis in nucleus pulposus(NP),block the inflammatory cascade,reduce matrix metalloproteinase expression(MMP),and remodel the extracellular matrix(ECM)in intervertebral discs(IVDs).The GM@CS-BP microspheres reduce H_(2)O_(2) intensity by 229%.Chemical grafting and electrostatic attraction increase the encapsulation rate of BPQDs by 167%and maintain stable release for 21 days,demonstrating the antioxidant properties and sustained modulation of the BPQDs.After the GM@CS-BP treatment,western blotting revealed decreased acid-sensitive ion channel-3 and inflammatory factors.Histological staining in an 8-week IVDD model confirmed the regeneration of NP.GM@CS-BP microspheres therefore maintain a balance between ECM synthesis and degradation by regulating the positive feedback between imbalanced oxygen metabolism in IVDs and inflammation.This study provides an in-depth interpretation of the mechanisms underlying the antioxidation of BPQDs and a new approach for IVDD treatment.
文摘Objective: To evaluate the enzymatic and non-enzymatic antioxidants of leaf extract from Alpinia purpurata. Methods: One gram of fresh leaf of Alpinia purpurata was grinded in 2 mL of 50% ethanol and centrifuged at 10,000×g at 4 ℃ for 10 min. The supernatant obtained was used within 4 h for various enzymatic antioxidants assays like superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase(GPx), glutathione S-transferase(GST), ascorbate oxidase, peroxidase, polyphenol oxidase(PPO) and non-enzymatic antioxidants such as vitamin C, total reduced glutathione(TRG) and lipid peroxidation(LPO). Results: The leaf extract of Alpinia purpurata possess antioxidants like vitamin C 472.92±6.80 μg/mg protein, GST 372.11±5.70 μmol of 1-chloro 2,4 dinitrobenzene(CDNB)-reduced glutathione(GSH) conjugate formed/min/mg protein, GPx 281.69±6.43 μg of glutathione oxidized/min/mg protein, peroxidases 173.12±9.40 μmol/g tissue, TRG 75.27±3.55 μg/mg protein, SOD 58.03±2.11 U/mg protein, CAT 46.70±2.35 μmol of H_2O_2 consumed/min/mg protein in high amount whereas ascorbate oxidase 17.41±2.46 U/g tissue, LPO 2.71±0.14 nmol/L of malondialdehyde formed/min/mg protein and PPO 1.14±0.11 μmol/g tissue in moderate amount. Conclusion: Alpinia purpurata has the potential to scavenge the free radicals and protect against oxidative stress causing diseases. In future, Alpinia purpurata may serve as a good pharmacotherapeutic agent.