We present a general formula to generate the family of odd-point ternary approximating subdivision schemes with a shape parameter for describing curves. The influence of parameter to the limit curves and the sufficien...We present a general formula to generate the family of odd-point ternary approximating subdivision schemes with a shape parameter for describing curves. The influence of parameter to the limit curves and the sufficient conditions of the continuities from C0 to C5 of 3- and 5-point schemes are discussed. Our family of 3-point and 5-point ternary schemes has higher order of derivative continuity than the family of 3-point and 5-point schemes presented by [Jian-ao Lian, On a-ary subdivision for curve design: II. 3-point and 5-point interpolatory schemes, Applications and Applied Mathematics: An International Journal, 3(2), 2008, 176-187]. Moreover, a 3-point ternary cubic B-spline is special case of our family of 3-point ternary scheme. The visual quality of schemes with examples is also demonstrated.展开更多
In this article, the objective is to introduce an algorithm to produce the quaternary m-point (for any integer m>1) approximating subdivision schemes, which have smaller support and higher smoothness, comparing to ...In this article, the objective is to introduce an algorithm to produce the quaternary m-point (for any integer m>1) approximating subdivision schemes, which have smaller support and higher smoothness, comparing to binary and ternary schemes. The proposed algorithm has been derived from uniform B-spline basis function using the Cox-de Boor recursion formula. In order to determine the convergence and smoothness of the proposed schemes, the Laurent polynomial method has been used.展开更多
In this paper, we propose and analyze a subdivision scheme which unifies 3-point approximating subdivision schemes of any arity in its compact form and has less support, computational cost and error bounds.? The usefu...In this paper, we propose and analyze a subdivision scheme which unifies 3-point approximating subdivision schemes of any arity in its compact form and has less support, computational cost and error bounds.? The usefulness of the scheme is illustrated by considering different examples along with its comparison with the established subdivision schemes. Moreover, B-splines of degree 4and well known 3-point schemes [1, 2, 3, 4, 6, 11, 12, 14, 15] are special cases of our proposed scheme.展开更多
In this paper, we propose a three point approximating subdivision scheme, with three shape parameters, that unifies three different existing three point approximating schemes. Some sufficient conditions for subdivisio...In this paper, we propose a three point approximating subdivision scheme, with three shape parameters, that unifies three different existing three point approximating schemes. Some sufficient conditions for subdivision curve C0 to C3 continuity and convergence of the scheme for generating tensor product surfaces for certain ranges of parameters by using Laurent polynomial method are discussed. The systems of curve and surface design based on our scheme have been developed successfully in garment CAD especially for clothes modelling.展开更多
A general formula for 4-point α-Ary approximating subdivision scheme for curve designing is introduced for any arity α≥2. The new scheme is extension of B-spline of degree 6. Laurent polynomial method is used to in...A general formula for 4-point α-Ary approximating subdivision scheme for curve designing is introduced for any arity α≥2. The new scheme is extension of B-spline of degree 6. Laurent polynomial method is used to investigate the continuity of the scheme. The variety of effects can be achieved in correspondence for different values of parameter. The applications of the proposed scheme are illustrated in comparison with the established subdivision schemes.展开更多
A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Four...A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Fourier transformation are easily applied. We finally obtain a regularized approximation to the inverse Laplace transform as finite sum展开更多
In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our me...In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our method is: first, we construct an initial surface which interpolates the four given boundary curves; then, while keeping the boundary control points of the initial surface un- changed, we reposition the inner control points of the surface with energy optimization method. Examples show that our algorithm is practicable and effective.展开更多
This paper investigates some approximation properties and learning rates of Lipschitz kernel on the sphere. A perfect convergence rate on the shifts of Lipschitz kernel on the sphere, which is faster than O(n-1/2), ...This paper investigates some approximation properties and learning rates of Lipschitz kernel on the sphere. A perfect convergence rate on the shifts of Lipschitz kernel on the sphere, which is faster than O(n-1/2), is obtained, where n is the number of parameters needed in the approximation. By means of the approximation, a learning rate of regularized least square algorithm with the Lipschitz kernel on the sphere is also deduced.展开更多
This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximat...This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximation effects than those of prevailing methods.In principle,the IBM can be applied for bounding more bounded smooth functions and their integrals as well,and its applications include approximating the integral of sin(x)/x function and improving the famous square root inequalities.展开更多
We consider the problem of approximating two, possibly unrelated probability distributions from a single complex-valued function and its Fourier transform. We show that this problem always has a solution within a spec...We consider the problem of approximating two, possibly unrelated probability distributions from a single complex-valued function and its Fourier transform. We show that this problem always has a solution within a specified degree of accuracy, provided the distributions satisfy the necessary regularity conditions. We describe the algorithm and construction of and provide examples of approximating several pairs of distributions using the algorithm.展开更多
In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new ...In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new insertion control points on a finer grid are computed by weighted sums of already existing control points. In the limit of the recursive process, data is defined on a dense set of point, The objective is to find an improved subdivision approximating algorithm which has a smaller support and a higher approximating order. The author chooses a ternary scheme because the best way to get a smaller support is to pass from the binary to ternary or complex algorithm and uses polynomial reproducing propriety to get higher approximation order. Using the cardinal Lagrange polynomials the author has proposed a 4-point approximating ternary subdivision algorithm and found that a higher regularity of limit function does not guarantee a higher approximating order. The proposed 4-point ternary approximation subdivision family algorithms with the mask a have the limit function in C2 and have approximation order 4. Also the author has demonstrated that in this class there is no algorithm whose limit function is in C3. It can be seen that this stationary ternary 4-point approximating symmetrical subdivision algorithm has a lower computational cost than the 6-point binary approximation subdivision algorithm for a greater range of points.展开更多
We treat infinite horizon optimal control problems by solving the associated stationary Bellman equation numerically to compute the value function and an optimal feedback law.The dynamical systems under consideration ...We treat infinite horizon optimal control problems by solving the associated stationary Bellman equation numerically to compute the value function and an optimal feedback law.The dynamical systems under consideration are spatial discretizations of non linear parabolic partial differential equations(PDE),which means that the Bellman equation suffers from the curse of dimensionality.Its non linearity is handled by the Policy Iteration algorithm,where the problem is reduced to a sequence of linear equations,which remain the computational bottleneck due to their high dimensions.We reformulate the linearized Bellman equations via the Koopman operator into an operator equation,that is solved using a minimal residual method.Using the Koopman operator we identify a preconditioner for operator equation,which deems essential in our numerical tests.To overcome computational infeasability we use low rank hierarchical tensor product approximation/tree-based tensor formats,in particular tensor trains(TT tensors)and multi-polynomials,together with high-dimensional quadrature,e.g.Monte-Carlo.By controlling a destabilized version of viscous Burgers and a diffusion equation with unstable reaction term numerical evidence is given.展开更多
The paper proposes the optimization problem of maximizing the sum of suBmodular and suPermodular(BP)functions with partial monotonicity under a streaming fashion.In this model,elements are randomly released from the s...The paper proposes the optimization problem of maximizing the sum of suBmodular and suPermodular(BP)functions with partial monotonicity under a streaming fashion.In this model,elements are randomly released from the stream and the utility is encoded by the sum of partial monotone suBmodular and suPermodular functions.The goal is to determine whether a subset from the stream of size bounded by parameter k subject to the summarized utility is as large as possible.In this work,a threshold-based streaming algorithm is presented for the BP maximization that attains a(1-k)/(2-k)-O(e)-approximation with O(1/e^(4)1og^(3)(1/s)log(2-k)k/(1-k)^(2))memory complexity,where k denotes the parameter of supermodularity ratio.We further consider a more general model with fair constraints and present a greedy-based algorithm that obtains the same approximation.We finally investigate this fair model under the streaming fashion and provide a(1-k)^(4)/(2-2k+k^(2))^(2)-O(e)-approximation algorithm.展开更多
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in...A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.展开更多
A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it a...A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it accounts for the limited acceptance angle of the detectorber.The rened model is validated in the wide range of optical parameters by Monte Carlo simulations of skin diffuse reectance at SDSs of units of mm.Cases of uniform dermis and two-layered epidermis-dermis structures are studied.Higher accuracy of the rened model compared to the conventional one is demonstrated in the separate,constraint-free reconstruction of absorption and reduced scattering spectra of uniform dermis from the Monte Carlo simulated data.In the case of epidermis-dermis geometry,the recovered values of reduced scattering in dermis are overestimated and the recovered values of absorption are underestimated for both analytical models.Presumably,in the presence of a thin mismatched topical layer,only the effective attenuation coe±cient of the bottom layer can be accurately recovered using a diffusion theorybased analytical model while separate reconstruction of absorption and reduced scattering fails due to the inapplicability of the method of images.These-ndings require implementation of more sophisticated models of light transfer in inhomogeneous media in the recovery algorithms.展开更多
This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so...This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly emplo...Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).展开更多
Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of...Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.展开更多
Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development...Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development and responses to environmental stimuli. However,the detailed dynamics of phytohormones in graft healing remain elusive. In this research, internodes above and below the graft site were harvested from 0 to 168 h after grafting(HAG), and liquid chromatography tandem mass spectrometry(LC-MS/MS) was used to determinate jasmonic acid, auxin, cytokinin, ethylene, salicylic acid, abscisic acid and gibberellin levels during the graft healing process. Uniform manifold approximation and projection(UMAP) and k-means analyses were performed to explore hormone spatio-temporal dynamics. We found the stage-specific and asymmetric accumulation of phytohormones in the tomato graft healing process. At the early healing stage(before vascular bundle reconnection), IAA, cZ, ABA, JA and SA mainly accumulated above the graft site, while tZ and ACC mainly accumulated below the graft site. MEIAA, ICAld and IP mainly accumulated at the later stage. Comminated with the healing process, we suggested that JA is mainly involved in wound responses, IAA is beneficial to the formation of callus and vascular cell development, tZ promotes cell division, and IP is linked to vascular bundle remodelling. In addition, expression of JA-related genes SlMYC2 and SlJAZ2, IAA-related gene SlIAA1, tZ-related genes SlHP2 and SlRR8, and IP-related gene SlRR9 correlated with hormone accumulation. The findings provide important information about the hormones and genes involved in the tomato graft healing process.展开更多
文摘We present a general formula to generate the family of odd-point ternary approximating subdivision schemes with a shape parameter for describing curves. The influence of parameter to the limit curves and the sufficient conditions of the continuities from C0 to C5 of 3- and 5-point schemes are discussed. Our family of 3-point and 5-point ternary schemes has higher order of derivative continuity than the family of 3-point and 5-point schemes presented by [Jian-ao Lian, On a-ary subdivision for curve design: II. 3-point and 5-point interpolatory schemes, Applications and Applied Mathematics: An International Journal, 3(2), 2008, 176-187]. Moreover, a 3-point ternary cubic B-spline is special case of our family of 3-point ternary scheme. The visual quality of schemes with examples is also demonstrated.
文摘In this article, the objective is to introduce an algorithm to produce the quaternary m-point (for any integer m>1) approximating subdivision schemes, which have smaller support and higher smoothness, comparing to binary and ternary schemes. The proposed algorithm has been derived from uniform B-spline basis function using the Cox-de Boor recursion formula. In order to determine the convergence and smoothness of the proposed schemes, the Laurent polynomial method has been used.
文摘In this paper, we propose and analyze a subdivision scheme which unifies 3-point approximating subdivision schemes of any arity in its compact form and has less support, computational cost and error bounds.? The usefulness of the scheme is illustrated by considering different examples along with its comparison with the established subdivision schemes. Moreover, B-splines of degree 4and well known 3-point schemes [1, 2, 3, 4, 6, 11, 12, 14, 15] are special cases of our proposed scheme.
基金Supported by the Indigenous PhD Scholarship Scheme of Higher Education Commission (HEC) Pakistan
文摘In this paper, we propose a three point approximating subdivision scheme, with three shape parameters, that unifies three different existing three point approximating schemes. Some sufficient conditions for subdivision curve C0 to C3 continuity and convergence of the scheme for generating tensor product surfaces for certain ranges of parameters by using Laurent polynomial method are discussed. The systems of curve and surface design based on our scheme have been developed successfully in garment CAD especially for clothes modelling.
文摘A general formula for 4-point α-Ary approximating subdivision scheme for curve designing is introduced for any arity α≥2. The new scheme is extension of B-spline of degree 6. Laurent polynomial method is used to investigate the continuity of the scheme. The variety of effects can be achieved in correspondence for different values of parameter. The applications of the proposed scheme are illustrated in comparison with the established subdivision schemes.
文摘A new method for approximating the inerse Laplace transform is presented. We first change our Laplace transform equation into a convolution type integral equation, where Tikhonov regularization techniques and the Fourier transformation are easily applied. We finally obtain a regularized approximation to the inverse Laplace transform as finite sum
基金Supported by the Natural Science Foundation of Hebei Province
文摘In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our method is: first, we construct an initial surface which interpolates the four given boundary curves; then, while keeping the boundary control points of the initial surface un- changed, we reposition the inner control points of the surface with energy optimization method. Examples show that our algorithm is practicable and effective.
基金Supported by the National Natural Science Foundation of China(61272023,91330118)
文摘This paper investigates some approximation properties and learning rates of Lipschitz kernel on the sphere. A perfect convergence rate on the shifts of Lipschitz kernel on the sphere, which is faster than O(n-1/2), is obtained, where n is the number of parameters needed in the approximation. By means of the approximation, a learning rate of regularized least square algorithm with the Lipschitz kernel on the sphere is also deduced.
基金Supported by the National Natural Science Foundation of China(61672009,61502130).
文摘This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximation effects than those of prevailing methods.In principle,the IBM can be applied for bounding more bounded smooth functions and their integrals as well,and its applications include approximating the integral of sin(x)/x function and improving the famous square root inequalities.
文摘We consider the problem of approximating two, possibly unrelated probability distributions from a single complex-valued function and its Fourier transform. We show that this problem always has a solution within a specified degree of accuracy, provided the distributions satisfy the necessary regularity conditions. We describe the algorithm and construction of and provide examples of approximating several pairs of distributions using the algorithm.
文摘In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new insertion control points on a finer grid are computed by weighted sums of already existing control points. In the limit of the recursive process, data is defined on a dense set of point, The objective is to find an improved subdivision approximating algorithm which has a smaller support and a higher approximating order. The author chooses a ternary scheme because the best way to get a smaller support is to pass from the binary to ternary or complex algorithm and uses polynomial reproducing propriety to get higher approximation order. Using the cardinal Lagrange polynomials the author has proposed a 4-point approximating ternary subdivision algorithm and found that a higher regularity of limit function does not guarantee a higher approximating order. The proposed 4-point ternary approximation subdivision family algorithms with the mask a have the limit function in C2 and have approximation order 4. Also the author has demonstrated that in this class there is no algorithm whose limit function is in C3. It can be seen that this stationary ternary 4-point approximating symmetrical subdivision algorithm has a lower computational cost than the 6-point binary approximation subdivision algorithm for a greater range of points.
基金support from the Research Training Group“Differential Equation-and Data-driven Models in Life Sciences and Fluid Dynamics:An Interdisciplinary Research Training Group(DAEDALUS)”(GRK 2433)funded by the German Research Foundation(DFG).
文摘We treat infinite horizon optimal control problems by solving the associated stationary Bellman equation numerically to compute the value function and an optimal feedback law.The dynamical systems under consideration are spatial discretizations of non linear parabolic partial differential equations(PDE),which means that the Bellman equation suffers from the curse of dimensionality.Its non linearity is handled by the Policy Iteration algorithm,where the problem is reduced to a sequence of linear equations,which remain the computational bottleneck due to their high dimensions.We reformulate the linearized Bellman equations via the Koopman operator into an operator equation,that is solved using a minimal residual method.Using the Koopman operator we identify a preconditioner for operator equation,which deems essential in our numerical tests.To overcome computational infeasability we use low rank hierarchical tensor product approximation/tree-based tensor formats,in particular tensor trains(TT tensors)and multi-polynomials,together with high-dimensional quadrature,e.g.Monte-Carlo.By controlling a destabilized version of viscous Burgers and a diffusion equation with unstable reaction term numerical evidence is given.
基金supported by the National Natural Science Foundation of China(No.12101587)the China Postdoctoral Science Foundation(No.2022M720329)+2 种基金the National Natural Science Foundation of China(No.12001523)the Beijing Natural Science Foundation Project(No.Z200002)the National Natural Science Foundation of China(No.12131003).
文摘The paper proposes the optimization problem of maximizing the sum of suBmodular and suPermodular(BP)functions with partial monotonicity under a streaming fashion.In this model,elements are randomly released from the stream and the utility is encoded by the sum of partial monotone suBmodular and suPermodular functions.The goal is to determine whether a subset from the stream of size bounded by parameter k subject to the summarized utility is as large as possible.In this work,a threshold-based streaming algorithm is presented for the BP maximization that attains a(1-k)/(2-k)-O(e)-approximation with O(1/e^(4)1og^(3)(1/s)log(2-k)k/(1-k)^(2))memory complexity,where k denotes the parameter of supermodularity ratio.We further consider a more general model with fair constraints and present a greedy-based algorithm that obtains the same approximation.We finally investigate this fair model under the streaming fashion and provide a(1-k)^(4)/(2-2k+k^(2))^(2)-O(e)-approximation algorithm.
基金supported by the General Program of the National Natural Science Foundation of China(Grant No.52074295)the Special Fund for Basic Scientific Research Business Expenses of Central Universities(Grant No.2022YJSSB06)supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and technology,Beijing,China(Grant No.SKLGDUEK202217).
文摘A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion.
基金supported by the Center of Excellence\Center of Photonics"funded by The Ministry of Science and Higher Education of the Russian Federation,Contract.№.075-15-2022-316.E.A.S.thanks Dr.Lev S.Dolin for fruitful discussions.
文摘A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it accounts for the limited acceptance angle of the detectorber.The rened model is validated in the wide range of optical parameters by Monte Carlo simulations of skin diffuse reectance at SDSs of units of mm.Cases of uniform dermis and two-layered epidermis-dermis structures are studied.Higher accuracy of the rened model compared to the conventional one is demonstrated in the separate,constraint-free reconstruction of absorption and reduced scattering spectra of uniform dermis from the Monte Carlo simulated data.In the case of epidermis-dermis geometry,the recovered values of reduced scattering in dermis are overestimated and the recovered values of absorption are underestimated for both analytical models.Presumably,in the presence of a thin mismatched topical layer,only the effective attenuation coe±cient of the bottom layer can be accurately recovered using a diffusion theorybased analytical model while separate reconstruction of absorption and reduced scattering fails due to the inapplicability of the method of images.These-ndings require implementation of more sophisticated models of light transfer in inhomogeneous media in the recovery algorithms.
文摘This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
基金supported by the National Natural Science Foundation of China (Grant Nos.21933006 and 21773124)the Fundamental Research Funds for the Central Universities Nankai University (Grant Nos.010-63233001,63221346,63213042,and ZB22000103)+1 种基金the support from the China Postdoctoral Science Foundation (Grant No.2021M691674)the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No.KF2020105)。
文摘Vanadium dioxide VO_(2) is a strongly correlated material that undergoes a metal-to-insulator transition around 340 K.In order to describe the electron correlation effects in VO_(2), the DFT+U method is commonly employed in calculations.However, the choice of the Hubbard U parameter has been a subject of debate and its value has been reported over a wide range. In this paper, taking focus on the phase transition behavior of VO_(2), the Hubbard U parameter for vanadium oxide is determined by using the quasi-harmonic approximation(QHA). First-principles calculations demonstrate that the phase transition temperature can be modulated by varying the U values. The phase transition temperature can be well reproduced by the calculations using the Perdew–Burke–Ernzerhof functional combined with the U parameter of 1.5eV. Additionally,the calculated band structure, insulating or metallic properties, and phonon dispersion with this U value are in line with experimental observations. By employing the QHA to determine the Hubbard U parameter, this study provides valuable insights into the phase transition behavior of VO_(2). The findings highlight the importance of electron correlation effects in accurately describing the properties of this material. The agreement between the calculated results and experimental observations further validates the chosen U value and supports the use of the DFT+U method in studying VO_(2).
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62101441)Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20210111)+4 种基金National Key Research and Development Program of China(Grant No.2021YFC2203503)the Fundamental Research Funds for the Central Universities(Grant No.QTZX23065)the Key Research and Development Program of Shaanxi in Industrial Domain(Grant No.2021GY-103)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411222203)the graduate innovation fund of Xi’an University of Posts and Electrical University(Grand No.CXJJZL2023002)。
文摘Covert communication technology makes wireless communication more secure,but it also provides more opportunities for illegal users to transmit harmful information.In order to detect the illegal covert communication of the lawbreakers in real time for subsequent processing,this paper proposes a Gamma approximation-based detection method for multi-antenna covert communication systems.Specifically,the Gamma approximation property is used to calculate the miss detection rate and false alarm rate of the monitor firstly.Then the optimization problem to minimize the sum of the missed detection rate and the false alarm rate is proposed.The optimal detection threshold and the minimum error detection probability are solved according to the properties of the Lambert W function.Finally,simulation results are given to demonstrate the effectiveness of the proposed method.
基金supported by the National Key Research and Development Program of China (Grant No.2020YFD1000300)the earmarked fund for CARS (Grant No.CARS-23-B10)+2 种基金the Key Research and Development Program of Hainan Province (Grant No.ZDKJ2021005)the Key Research and Development Program of Shandong Province (Grant No.LJNY202106)the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (Grant No.CAAS-ASTIP-IVFCAAS)。
文摘Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development and responses to environmental stimuli. However,the detailed dynamics of phytohormones in graft healing remain elusive. In this research, internodes above and below the graft site were harvested from 0 to 168 h after grafting(HAG), and liquid chromatography tandem mass spectrometry(LC-MS/MS) was used to determinate jasmonic acid, auxin, cytokinin, ethylene, salicylic acid, abscisic acid and gibberellin levels during the graft healing process. Uniform manifold approximation and projection(UMAP) and k-means analyses were performed to explore hormone spatio-temporal dynamics. We found the stage-specific and asymmetric accumulation of phytohormones in the tomato graft healing process. At the early healing stage(before vascular bundle reconnection), IAA, cZ, ABA, JA and SA mainly accumulated above the graft site, while tZ and ACC mainly accumulated below the graft site. MEIAA, ICAld and IP mainly accumulated at the later stage. Comminated with the healing process, we suggested that JA is mainly involved in wound responses, IAA is beneficial to the formation of callus and vascular cell development, tZ promotes cell division, and IP is linked to vascular bundle remodelling. In addition, expression of JA-related genes SlMYC2 and SlJAZ2, IAA-related gene SlIAA1, tZ-related genes SlHP2 and SlRR8, and IP-related gene SlRR9 correlated with hormone accumulation. The findings provide important information about the hormones and genes involved in the tomato graft healing process.