期刊文献+
共找到1,232篇文章
< 1 2 62 >
每页显示 20 50 100
An innovative classification system for ranking the biological effects of marine aromatic hydrocarbons based on fish embryotoxicity 被引量:1
1
作者 Ronghui Zheng Chao Fang +4 位作者 Fukun Hong Min Zhang Fulong Gao Yusheng Zhang Jun Bo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期153-162,共10页
Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the bio... Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework. 展开更多
关键词 petroleum hydrocarbons polycyclic aromatic hydrocarbons fish expert system integrated biomarker response nested one-way analysis of variance
下载PDF
Hyperbranched polymer hollow-fiber-composite membranes for pervaporation separation of aromatic/aliphatic hydrocarbon mixtures
2
作者 Tong Liu Hao Sun +5 位作者 Xiangqiong Wang Jie Li Zhanquan Zhang Pei Wu Naixin Wang Quanfu An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期13-22,共10页
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me... The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. 展开更多
关键词 aromatic/aliphatic hydrocarbons Hyperbranched polymer PERVAPORATION Hollow fiber membrane DIP-COATING
下载PDF
Rational design of new in situ reduction of Ni(II)catalytic system for low-cost and large-scale preparation of porous aromatic frameworks
3
作者 Shanshan Wang Yue Wu +3 位作者 Wenxiang Zhang Hao Ren Guangshan Zhu Heping Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期105-113,共9页
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD... Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr. 展开更多
关键词 adsorption carbon material nickel catalysis porous aromatic framework porous organic polymer
下载PDF
Highly selective extraction of aromatics from aliphatics by using metal chloride-based ionic liquids
4
作者 Hui Yu Xiaojia Wu +4 位作者 Chuanqi Geng Xinyu Li Chencan Du Zhiyong Zhou Zhongqi Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期222-229,共8页
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and... The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly. 展开更多
关键词 Ionic liquid aromatic hydrocarbon Aliphatic hydrocarbon Extraction
下载PDF
Changes in the Non-targeted Metabolomic Profile of Three-year-old Toddlers with Elevated Exposure to Polycyclic Aromatic Hydrocarbons
5
作者 LI Yang LIN Dan +7 位作者 ZHANG Xiu Qin JU Guang Xiu SU Ya ZHANG Qian DUAN Hai Ping YU Wei Sen WANG Bing Ling PANG Shu Tao 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第5期479-493,共15页
Objective To investigate changes in the urinary metabolite profiles of children exposed to polycyclic aromatic hydrocarbons(PAHs)during critical brain development and explore their potential link with the intestinal m... Objective To investigate changes in the urinary metabolite profiles of children exposed to polycyclic aromatic hydrocarbons(PAHs)during critical brain development and explore their potential link with the intestinal microbiota.Methods Liquid chromatography-tandem mass spectrometry was used to determine ten hydroxyl metabolites of PAHs(OH-PAHs)in 36-month-old children.Subsequently,37 children were categorized into low-and high-exposure groups based on the sum of the ten OH-PAHs.Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to identify non-targeted metabolites in the urine samples.Furthermore,fecal flora abundance was assessed by 16S rRNA gene sequencing using Illumina MiSeq.Results The concentrations of 21 metabolites were significantly higher in the high exposure group than in the low exposure group(variable importance for projection>1,P<0.05).Most of these metabolites were positively correlated with the hydroxyl metabolites of naphthalene,fluorine,and phenanthrene(r=0.336–0.531).The identified differential metabolites primarily belonged to pathways associated with inflammation or proinflammatory states,including amino acid,lipid,and nucleotide metabolism.Additionally,these distinct metabolites were significantly associated with specific intestinal flora abundances(r=0.34–0.55),which were mainly involved in neurodevelopment.Conclusion Higher PAH exposure in young children affected metabolic homeostasis,particularly that of certain gut microbiota-derived metabolites.Further investigation is needed to explore the potential influence of PAHs on the gut microbiota and their possible association with neurodevelopmental outcomes. 展开更多
关键词 Child Gut microbiota Non-targeted metabolomics Polycyclic aromatic hydrocarbons Urinary metabolite profile
下载PDF
Enriching Iodine and Regulating Grain Aroma,Appearance Quality,and Yield in Aromatic Rice by Foliar Application of Sodium Iodide
6
作者 HONG Weiyuan DUAN Meiyang +5 位作者 WANG Yifei CHEN Yongjian MO Zhaowen QI Jianying PAN Shenggang TANG Xiangru 《Rice science》 SCIE CSCD 2024年第3期328-342,I0046-I0054,共24页
Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing se... Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing seasons of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration.At the full heading stage,six different concentrations of sodium iodide solutions of 0%(CK),0.010%(T1),0.025%(T2),0.050%(T3),0.075%(T4),and 0.100%(T5)were applied to indica aromatic rice cultivars Meixiangzhan 2 and Xiangyaxiangzhan.The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains.Compared with the CK,the T1 and T2 treatments increased the 2-acetyl-1-pyrroline(2-AP)content in mature grains by 8.41%-101.66%and 13.58%-74.60%,respectively.Improvements in the contents of 1-pyrroline-5-carboxylic acid,proline,1-pyrroline,and methylglyoxal,as well as the activity of proline dehydrogenase were also detected.Additionally,sodium iodide treatments remarkably decreased the chalky grain rate,chalkiness area,and chalkiness degree of aromatic rice,with the T2 treatment exhibiting a 17.79%-47.42%decrease in chalkiness degree compared with the CK.Meanwhile,T1 and T2 treatments showed beneficial impacts on chlorophyll content,photosynthetic characteristics,and yield components,while T3,T4,and T5 treatments exhibited adverse effects on leaf and grain yields.The linear discriminant analysis revealed significant differences between treatments.The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves,thereby regulating the 2-AP biosynthesis and yield components,ultimately affecting the 2-AP content and yield.Overall,this study suggests that foliar application of 0.025%sodium iodide is an effective method to enrich the iodine content in rice grains,improve the grain aroma and appearance quality of aromatic rice,without detrimental effects on grain yield. 展开更多
关键词 2-acetyl-1-pyrroline appearance quality aromatic rice foliar application grain yield IODINE
下载PDF
Eco-toxicity and health risk assessment of polycyclic aromatic hydrocarbons in surface sediments of Burullus Lake in Egypt
7
作者 Hanan E Osman Mohamed H E El-Morsy Hazem T Abd El-Hamid 《China Geology》 CAS CSCD 2024年第3期460-468,共9页
Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous environmental contaminants of growing concern due to their potential ecological and human health risks.This study presents a comprehensive assessment of PAHs contam... Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous environmental contaminants of growing concern due to their potential ecological and human health risks.This study presents a comprehensive assessment of PAHs contamination in the surface sediments of Burullus Lake,a vital and second largest delta lake in Egypt.The aim was to evaluate the eco-toxicity and potential health risks associated with the presence of these compounds.Surface seven sediment samples were collected from various drains in the southern part of Burullus Lake.Soxhlet extraction method was employed to extract PAHs(16PAHs)from the sediment sample.Analytically,target compounds were located using HPLC.The results showed that samples contained PAHs levels ranging from 0.038×10^(-6)to 0.459×10^(-6),which is considered heavily polluted by the European standard for PAHs pollution.Additionally,there was no apparent source of PAHs in the ElKhashah drain or the Brinbal Canal,as HPLC found none of the compounds.The most prevalent compound in sediment samples along the study area was fluoranthene.The diagnostic indices in the present study indicated that the hydrocarbons in the region originated from pyrolytic and man-made sources along the drains of Burullus Lake.The principal component analysis(PCA)and diagnostic ratios revealed that coal combustion and pyrolytic sources were responsible for the PAHs contamination in the surface sediments.The non-carcinogenic risk(HI),which is the product of the HQs for the adult and child populations,respectively,was calculated.HI values under 1,therefore,demonstrated that they had no carcinogenic effects on human health.TEQs and MEQs in the sediments of Burullus Lake do not have a cancer-causing impact on people.For the safety of nearby wildlife,aquatic life,and people,all activities that raise petroleum hydrocarbon levels in Burullus Lake must be adequately regulated and controlled.According to the ecological risk assessment,there is little chance that PAHs will be found in the sediments of Burullus Lake.This study underscores the urgent need for effective pollution control measures and regular monitoring of PAHs levels in Burullus Lake sediments to protect the aquatic ecosystem and public health.It also highlights the importance of considering eco-toxicity and human health risks in integrated risk assessments of PAHs-contaminated environments. 展开更多
关键词 Polycyclic aromatic hydrocarbons Diagnostic indices TOXICITY Delta lake sediment Burullus Lake Human health risk Aquatic ecosystem HPLC Coal combustion
下载PDF
Physiology of medicinal and aromatic plants under drought stress
8
作者 Zohreh Emami Bistgani Allen V.Barker Masoud Hashemi 《The Crop Journal》 SCIE CSCD 2024年第2期330-339,共10页
Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspect... Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspects of plants’growth and metabolism.In response to this adversity,medicinal plants employ mechanisms such as morphological and structural adjustments,modulation of drought-resistant genes,and augmented synthesis of secondary metabolites and osmotic regulatory substances to alleviate the stress.Extreme water scarcity can lead to leaf wilting and may ultimately result in plant death.The cultivation and management of medicinal plants under stress conditions often differ from those of other crops.This is because the main goal with medicinal plants is not only to increase the yield of the above-ground parts but also to enhance the production of active ingredients such as essential oils.To elucidate these mechanisms of drought resistance in medicinal and aromatic plants,the current review provides a summary of recent literature encompassing studies on the morphology,physiology,and biochemistry of medicinal and aromatic plants under drought conditions. 展开更多
关键词 Drought stress Medicinal and aromatic plants PHYTOCHEMISTRY PHYSIOLOGY
下载PDF
Mitigation of polycyclic aromatic hydrocarbons(PAHs)in roasted beef patties by cold plasma treatment and products quality evaluation
9
作者 Yuke Hou Yangjian Hu +8 位作者 Min Li Jiahui Nong Fengyuan Xie Yuhan Fan Jianhao Zhang Xianming Zeng Minyi Han Xinglian Xu Xia Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2993-3005,共13页
The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patti... The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment. 展开更多
关键词 Roasted beef Polycyclic aromatic hydrocarbons Cold plasma Mitigation mechanism Product quality evaluation
下载PDF
Physical-Rheological Properties and Performances of Rejuvenated(Styrene-Butadiene-Styrene)Asphalt with Polymerized-MDI and Aromatic Oil
10
作者 Ao Lu Ming Xiong +3 位作者 Chen Chen Liangjiang Li Haibei Tan Xiong Xu 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1633-1646,共14页
Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binder... Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation. 展开更多
关键词 Aged SBS modified asphalt polymerized 4 4-diphenylmethane diisocyanate aromatic oil physical properties rheological properties mixture performance
下载PDF
Qualitative analysis of aromatic compounds via 1D TOCSY techniques
11
作者 Wenbo Dong Qi Zhao +3 位作者 Jiancheng Zhao Jiarong Zhang Yingxiong Wang Yan Qiao 《Magnetic Resonance Letters》 2024年第1期21-27,共7页
The aromatic compounds,including o-xylene,m-xylene,p-xylene,and ethylbenzene,primarily originate from the catalytic reforming of crude oil,and have a wide variety of applications.However,because of similar physical an... The aromatic compounds,including o-xylene,m-xylene,p-xylene,and ethylbenzene,primarily originate from the catalytic reforming of crude oil,and have a wide variety of applications.However,because of similar physical and chemical properties,these compounds are difficult to be identified by gas chromatography(GC)without standard samples.With the development of modern nuclear magnetic resonance(NMR)techniques,NMR has emerged as a powerful and efficient tool for the rapid analysis of complex and crude mixtures without purification.In this study,the parameters of one-dimensional(1D)total correlation spectroscopy(TOCSY)NMR techniques,including 1D selective gradient TOCSY and 1D chemicalshift-selective filtration(CSSF)with TOCSY,were optimized to obtain comprehensive molecular structure information.The results indicate that the overlapped signals in NMR spectra of nonpolar aromatic compounds(including o-xylene,m-xylene,p-xylene and ethylbenzene),polar aromatic compounds(benzyl alcohol,benzaldehyde,benzoic acid),and aromatic compounds with additional conjugated bonds(styrene)can be resolved in 1D TOCSY.More importantly,full molecular structures can be clearly distinguished by setting appropriate mixing time in 1D TOCSY.This approach simplifies the NMR spectra,provides structural information of entire molecules,and can be applied for the analysis of other structural isomers. 展开更多
关键词 1D TOCSY NMR technologies XYLENES aromatic compounds Structure information of entire molecular Qualitative analysis
下载PDF
Controllable Condensation of Aromatics and Its Mechanisms in Carbonization
12
作者 Fan Xi Wang Chunlu +3 位作者 Luo Yang Ren Qiang Shen Haiping Long Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期34-46,共13页
In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations we... In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene. 展开更多
关键词 CARBONIZATION controllable condensation aromaticS MECHANISMS molecular simulation
下载PDF
Heterogeneously elevated branched-chain/aromatic amino acids among new-onset type-2 diabetes mellitus patients are potentially skewed diabetes predictors
13
作者 Min Wang Yang Ou +7 位作者 Xiang-Lian Yuan Xiu-Fang Zhu Ben Niu Zhuang Kang Bing Zhang Anwar Ahmed Guo-Qiang Xing Heng Su 《World Journal of Diabetes》 SCIE 2024年第1期53-71,共19页
BACKGROUND The lack of specific predictors for type-2 diabetes mellitus(T2DM)severely impacts early intervention/prevention efforts.Elevated branched-chain amino acids(BCAAs:Isoleucine,leucine,valine)and aromatic amin... BACKGROUND The lack of specific predictors for type-2 diabetes mellitus(T2DM)severely impacts early intervention/prevention efforts.Elevated branched-chain amino acids(BCAAs:Isoleucine,leucine,valine)and aromatic amino acids(AAAs:Tyrosine,tryptophan,phenylalanine)show high sensitivity and specificity in predicting diabetes in animals and predict T2DM 10-19 years before T2DM onset in clinical studies.However,improvement is needed to support its clinical utility.AIM To evaluate the effects of body mass index(BMI)and sex on BCAAs/AAAs in new-onset T2DM individuals with varying body weight.METHODS Ninety-seven new-onset T2DM patients(<12 mo)differing in BMI[normal weight(NW),n=33,BMI=22.23±1.60;overweight,n=42,BMI=25.9±1.07;obesity(OB),n=22,BMI=31.23±2.31]from the First People’s Hospital of Yunnan Province,Kunming,China,were studied.One-way and 2-way ANOVAs were conducted to determine the effects of BMI and sex on BCAAs/AAAs.RESULTS Fasting serum AAAs,BCAAs,glutamate,and alanine were greater and high-density lipoprotein(HDL)was lower(P<0.05,each)in OB-T2DM patients than in NW-T2DM patients,especially in male OB-T2DM patients.Arginine,histidine,leucine,methionine,and lysine were greater in male patients than in female patients.Moreover,histidine,alanine,glutamate,lysine,valine,methionine,leucine,isoleucine,tyrosine,phenylalanine,and tryptophan were significantly correlated with abdominal adiposity,body weight and BMI,whereas isoleucine,leucine and phenylalanine were negatively correlated with HDL.CONCLUSION Heterogeneously elevated amino acids,especially BCAAs/AAAs,across new-onset T2DM patients in differing BMI categories revealed a potentially skewed prediction of T2DM development.The higher BCAA/AAA levels in obese T2DM patients would support T2DM prediction in obese individuals,whereas the lower levels of BCAAs/AAAs in NW-T2DM individuals may underestimate T2DM risk in NW individuals.This potentially skewed T2DM prediction should be considered when BCAAs/AAAs are to be used as the T2DM predictor. 展开更多
关键词 Hyperaminoacidemia Branched-chain/aromatic amino acids New-onset type-2 diabetes Predictor Obesity SEX
下载PDF
Research Progress of Aromatic Bed Curtains for Aiding Sleep Based on Lavender Microcapsule Technique
14
作者 Xiaojun LUO Xuan PAN +3 位作者 Kaiyan QIU Ken HUANG Yao LU Jingjing LI 《Agricultural Biotechnology》 2024年第2期64-67,71,共5页
In this paper, the preparation technique of lavender essential oil microcapsules and the construction method of aromatic textiles were expounded, and the research status of bed curtains and lavender microcapsules at h... In this paper, the preparation technique of lavender essential oil microcapsules and the construction method of aromatic textiles were expounded, and the research status of bed curtains and lavender microcapsules at home and abroad was analyzed and studied from the perspective of application in textiles. The application of lavender essential oil to bed curtains through the microcapsule technique was put forward to allow lavender essential oil to play its role of helping sleep in bed curtains. This paper expounded the material selection and preparation technique of lavender microcapsule agents, and put forward the preparation method of microcapsules with mixed solutions of pure Chinese medicine extracts and natural essences as core material and high-viscosity epoxy resin as wall materials. The post-processing techniques and the spray ironing method for clothing were studied and developed, and these techniques and methods were applied to bed curtains, and good results were obtained. 展开更多
关键词 LAVENDER Sleep aid aromatic bed curtain MICROCAPSULE
下载PDF
Sensory Phenotypic and Molecular Identification of Aromatic Rice Accessions Cultivated in Benin
15
作者 Chimène Nadège Mahoussi Nanoukon Koffi David Montcho Hambada +7 位作者 Deless Edmond Fulgence Thiémélé Bignon Meyrix Pamela Franzel Loumedjinon Babatoundé Franel Carel Wenceslas Affolabi Amed Sèmèvo Havivi Kéllya Laurinzo Déguénon Grâce Finagnon Vitoekpon Arielle Bankole Lambert Gustave Djedatin 《Advances in Bioscience and Biotechnology》 CAS 2024年第3期195-206,共12页
Rice is one of the most widely cultivated cereals in the world, and its aroma is increasingly in demand. With the advancement of research, a major rice flavor gene has been identified on rice chromosome 8. It encodes ... Rice is one of the most widely cultivated cereals in the world, and its aroma is increasingly in demand. With the advancement of research, a major rice flavor gene has been identified on rice chromosome 8. It encodes non-functional betaine aldehyde dehydrogenase leading to the accumulation of 2-acetyl-1-pyrroline which is the major olfactory compound that confers the fragrant character to rice. The aroma of rice is considered a special trait of enormous economic importance that determines the prime price in world trade. To satisfy the needs of the population and reduce rice imports into Benin, we conducted this study to identify aromatic rice accessions grown in Benin. Seventy-two rice accessions collected across Benin were PCR amplified with three SSR markers RM 7049, Aro 7, and RM 223, linked to the fgr (fragrance of rice) aroma gene. Molecular analysis revealed that 12 of the 72 accessions, namely Bagou 19, Bagou 22, Tchaka 34, Foun 15, Tchaka 41, Nana 32, Kan 61, Kung 69, Kung 67, Bagou 20, Agbab 101 and Koum 55 possess the fgr gene and can be considered as aromatic rice accessions. A sensory phenotypic test using KOH was carried out on rice accessions carrying fgr gene. Of the twelve positives, only one had the smell of aromatic rice, like the Azucena control. These results show that Benin also has aromatic rice varieties that can be sold on national and international markets. 展开更多
关键词 aromatic Rice 2-Acetyl-1-Pyrroline SSR Markers BENIN
下载PDF
Study on Adsorption Removal of Polycyclic Aromatic Hydrocarbons by Modified Mussel Shells
16
作者 Jiaxing LIU Muchen LANG +2 位作者 Mei LIU Kecun MA Qingguo CHEN 《Meteorological and Environmental Research》 2024年第1期83-86,共4页
Polycyclic aromatic hydrocarbons(PAHs)are typical persistent organic pollutants(POPs)that are commonly found in the environment.They are carcinogenic,teratogenic,mutagenic and biodegradable obviously.In this paper,the... Polycyclic aromatic hydrocarbons(PAHs)are typical persistent organic pollutants(POPs)that are commonly found in the environment.They are carcinogenic,teratogenic,mutagenic and biodegradable obviously.In this paper,the modified mussel shells were used to adsorb and remove anthracene.The results show that the adsorption removal rate of the mussel shells was higher after calcination at 600℃.5%H_(3)PO_(4) solution was more suitable for shell treatment than 3 mol/L ZnCl_(2) solution.As the dosage of the modified shells was 0.5 g/L,the adsorption reached a stable state,and the removal rate of PAHs was about 69.44%;the adsorption efficiency rose with the increase of time.It can be seen that as a new and cheap biological adsorbent,the modified shells can be used to remove PAHs from wastewater. 展开更多
关键词 Mussel shells ADSORPTION Polycyclic aromatic hydrocarbons
下载PDF
Effect of Steam Treatment on the Catalytic Performance of ZSM-5 in the Co-conversion of Methanol and n-Hexane to Aromatics
17
作者 Wei Shumei Xu Yarong +2 位作者 Yang Fan Zhu Kake Zhu Xuedong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期73-81,共9页
Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-... Steam pretreatment is a widely used method for modifying the acidity and structure of zeolites,thereby enhancing their catalytic properties.This study systematically investigated the effects of steam treatment on ZSM-5 zeolites at varying treatment temperatures and durations.The structural evolution of the catalysts was monitored using N2 adsorptiondesorption,X-ray diffraction,inductively coupled plasma optical emission spectroscopy,scanning electron microscopy,NH3 temperature-programmed desorption,in situ pyridine infrared spectroscopy,and thermogravimetric analysis.The characterization results revealed that mesopores were introduced into the ZSM-5 zeolite catalysts through dealumination induced using steam treatment at moderate temperatures(400 and 500℃).Moreover,compared with the parent catalyst,the steam-treated catalysts exhibited a lower amount of acid sites and relative crystallinity,while the n(Si)/n(Al)ratio increased.In the co-conversion of methanol and n-hexane in a fixed bed reactor at 400℃and 0.5 MPa(N2 atmosphere),with a weight hourly space velocity of 1 h−1 and a stoichiometric ratio of 1:1(CH3OH to n-hexane),the steam-treated catalysts displayed a prolonged catalyst lifetime.Particularly,the parent zeolite had a lifetime of 96 h,while the catalyst treated at 500℃for 12 h had a lifetime of up to 240 h.Additionally,the steam-treated catalysts maintained stable n-hexane conversion and improved aromatic selectivity.Notably,these treated catalysts exhibited a lower deactivation rate than the parent catalyst,and would be conducive to industrial scale-up production. 展开更多
关键词 steam ZSM-5 zeolites co-conversion AROMATIZATION METHANOL N-HEXANE
下载PDF
The dynamic catalysis of Ga/ZSM-5 catalysts for propane-CO_(2) coupling conversion to aromatics and syngas
18
作者 Yonggui Song Zhong-Pan Hu +12 位作者 Haohao Feng Enze Chen Le Lv Yimo Wu Zhen Liu Yong Jiang Xiaozhi Su Feifei Xu Mingchang Zhu Jingfeng Han Yingxu Wei Svetlana Mintova Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期513-519,I0011,共8页
Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owin... Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system. 展开更多
关键词 Carbon dioxide Propane aromatization Ga/ZSM-5 Gallium hydride Spectroscopy
下载PDF
Molecular Characterization of C_(9+)Aromatics in Gasoline by Gas Chromatography-Mass Spectrometry
19
作者 Han Xu Song Chunxia +2 位作者 Qian Qin Li Changxiu Sun Xinyuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期81-91,共11页
The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.How... The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction. 展开更多
关键词 GASOLINE C_(9+)aromatics heavy aromatics GC-MS
下载PDF
Germplasm Resources,Genes and Perspective for Aromatic Rice 被引量:2
20
作者 Prafulla Kumar BEHERA Debabrata PANDA 《Rice science》 SCIE CSCD 2023年第4期294-305,共12页
Aromatic rice is considered an important commodity in the global market because of its strong aroma and eating and cooking quality.Asian countries,such as India and Pakistan,are the leading traders of Basmati rice,whe... Aromatic rice is considered an important commodity in the global market because of its strong aroma and eating and cooking quality.Asian countries,such as India and Pakistan,are the leading traders of Basmati rice,whereas Thailand is the major supplier of Jasmine rice in the international market.The strong aroma of rice is associated with more than 300 volatile compounds,among which 2-acetyl-1-pyrroline(2-AP)is the principal component.2-AP is a phenotypic expression of spontaneous mutations in the recessive gene OsBadh2 or Badh2.The present review focuses on the origin,evolution and diversity of genetic resources of aromatic rice available worldwide.A brief discussion is presented on the genes responsible for quality traits along with details of their molecular genetics.This compilation and discussion will be useful for future breeding programs and the biofortification of quality traits of aromatic rice to ensure food security and nutritional need. 展开更多
关键词 aromatic rice 2-acetyl-1-pyrroline polyamine degradation pathway quality trait
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部