This study describes the adsorption behavior of three arylthiophene derivatives namely:2-(4-amidino-3-fluorophenyl)-5-[4-methoxy phenyl] thiophene dihydrochloride salt(MA-1217),2-(4-amidinophenyl)-5-[4-chlorophenyll t...This study describes the adsorption behavior of three arylthiophene derivatives namely:2-(4-amidino-3-fluorophenyl)-5-[4-methoxy phenyl] thiophene dihydrochloride salt(MA-1217),2-(4-amidinophenyl)-5-[4-chlorophenyll thiophene dihydrochloride salt(MA-1316) and 2-(4-amidino-3-fluorophenyl)-5-[4-ch lorophenyllthiophene dihydrochloride salt(MA-1312) at C-steel in 1.0 mol·L^(-1) HCl interface using experimental and theoretical studies.Electrochemical and mass loss measurements showed that the inhibition efficiency(IE) of the arylthiophene derivatives increases with increasing concentrations and exhibited maximum efficiency 89% at 21×10^(-6) mol·L^(-1)(MA-1217) by mass loss method.The investigated arylthiophene derivatives obey the Langmuir adsorption isotherm.From polarization studies the arylthiophene derivatives act as mixed-type inhibitors.Surface analysis were carried out and discussed.The mode of orientation and adsorption of inhibitor molecules on C-steel surface was studied using molecular dynamics(MD) simulations.Quantum chemical parameters as well as the radial distribution function indices and binding energies confirm the experimental results.展开更多
基金financial support provided by the Ministry of Higher Education&Scientific Research of Yemen。
文摘This study describes the adsorption behavior of three arylthiophene derivatives namely:2-(4-amidino-3-fluorophenyl)-5-[4-methoxy phenyl] thiophene dihydrochloride salt(MA-1217),2-(4-amidinophenyl)-5-[4-chlorophenyll thiophene dihydrochloride salt(MA-1316) and 2-(4-amidino-3-fluorophenyl)-5-[4-ch lorophenyllthiophene dihydrochloride salt(MA-1312) at C-steel in 1.0 mol·L^(-1) HCl interface using experimental and theoretical studies.Electrochemical and mass loss measurements showed that the inhibition efficiency(IE) of the arylthiophene derivatives increases with increasing concentrations and exhibited maximum efficiency 89% at 21×10^(-6) mol·L^(-1)(MA-1217) by mass loss method.The investigated arylthiophene derivatives obey the Langmuir adsorption isotherm.From polarization studies the arylthiophene derivatives act as mixed-type inhibitors.Surface analysis were carried out and discussed.The mode of orientation and adsorption of inhibitor molecules on C-steel surface was studied using molecular dynamics(MD) simulations.Quantum chemical parameters as well as the radial distribution function indices and binding energies confirm the experimental results.