For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis...For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis of the pavement is conducted considering asphalt mixtures as porous media. Results reveal that the development and dissipation of the dynamic pore pressure are coinstantaneous and this makes both the positive and negative dynamic pore pressure and seepage force alternate with time. Repetitive hydrodynamic pumping and sucking during moisture damage is proved. The dynamic pore pressure increases with vehicle velocity. Effective stress and deflection of pavement decrease due to the dynamic pore water pressure. However, the emulsification and replacement of the asphalt membrane by water are accelerated. The maximum dynamic pore pressure occurs at the bottom of the surface course. So it is suggested that a drain course should be set up to change the draining condition from single-sided drain to a two-sided drain, and thus moisture damage can be effectively limited.展开更多
The rutting simulation method considering temperature variance and traffic time distribution is developed through ABAQUS software. The short-term behavior of pavement rut under the effects of temperature and traffic l...The rutting simulation method considering temperature variance and traffic time distribution is developed through ABAQUS software. The short-term behavior of pavement rut under the effects of temperature and traffic loading is addressed. Then sensitivity analysis on the factors of temperature and traffic loading is conducted and a short-term rutting prediction model is developed. The results show that under the same conditions of temperature and the number of load repetitions, rut increases sharply with the contact pressure in a linear manner, while as for the heavy load situation, the increases likely to be more nonlinear and faster; the significant factors affecting rutting include daily maximum air temperature, daily solar radiation volume, daily minimum air temperature, tire-pavement contact pressure and the number of load repetitions. Finally, a short-term rutting prediction model reflecting the effects of air temperature and traffic loading is developed, and it can be used for prediction and pre-waming for pavement rut prevention.展开更多
To investigate the cost-effectiveness of different maintenance treatments of highways in Jiangsu Province, the historical pavement maintenance records, traffic load information and pavement performance data in the pav...To investigate the cost-effectiveness of different maintenance treatments of highways in Jiangsu Province, the historical pavement maintenance records, traffic load information and pavement performance data in the pavement management system (PMS) are recorded and analyzed. Compared with the growth model, the linear model, the logarithm model and the exponential model, the cubic model has higher regression accuracy R2 and it can capture the sigmoid shape of the deterioration curve. So it is selected to simulate the pavement rotting development. The benefit over cost ratio is calculated to quantify the treatment cost- effectiveness. The analysis results show that thin hot mix asphalt (HMA) overlays and micro surfacing are more cost- effective than the. other two treatments on light and moderate traffic roads. Hot in-place recycling and thick HMA overlays have much longer service lives and greater cost-effectiveness under heavy or extra heavy traffic.展开更多
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns...In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.展开更多
Through the shear tests on composite specimens using four different kinds of tack coat material (epoxy resin, SBS modified emulsified asphalt, SBS modified asphalt and H# bridge waterproof material), the bond condit...Through the shear tests on composite specimens using four different kinds of tack coat material (epoxy resin, SBS modified emulsified asphalt, SBS modified asphalt and H# bridge waterproof material), the bond condition between layers of porous asphalt pavement under traffic load, temperature variation and moisture situation is evaluated. The test results show that the bond strength decreases with the rise in temperature, and the relationship between shear strength and temperature can be expressed by a logarithm curve at a high reliability. Under the action of traffic load, the value of shear strength of the mixture right under the centre of the wheel track is smaller than that of other parts of the pavement. It is also found that some effects concerning moisture have comparative effects on the bonding of the two layers. Given all the results achieved during the study, it will be quite rewarding to make rational comparisons during selecting the sound type of tack coat.展开更多
A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating...A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.展开更多
This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radia...This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radiation and convection.An innovative time-dependent function was proposed to predict the pavement surface temperature with solar radiation and air temperature using dimensional analysis in order to simplify the complex heat exchange on the pavement surface.The parameters for the time-dependent pavement surface temperature function were obtained through the regression analysis of field measurement data.Assuming that the initial pavement temperature distribution was linear and the influence of the base course materials on the temperature of the upper asphalt layers was negligible,a close-form analytical solution of the temperature in asphalt layers was derived using Green's function.Finally,two numerical examples were presented to validate the model solutions with field temperature measurements.Analysis results show that the solution accuracy is in agreement with field data and the relative errors at a shallower depth are greater than those at a deeper one.Although the model is not sensitive to dramatic changes in climatic factors near the pavement surface,it is applicable for predicting pavement temperature field in cloudless days.展开更多
In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures...In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.展开更多
Hydroplaning speed can be affected by pavement texture depth,thickness of water film,tire pressure and tread depth.In this study,to understand the influence of pavement texture on the hydroplaning speed,a new lab-scal...Hydroplaning speed can be affected by pavement texture depth,thickness of water film,tire pressure and tread depth.In this study,to understand the influence of pavement texture on the hydroplaning speed,a new lab-scale apparatus has been designed and manufactured.The lack of proportion between linear movement of vehicle shaft and the wheel rotation was found to be a good index to determine hydroplaning threshold.A 5%drop in the ratio of wheel-to-axle rotation has been assumed as an index to determine hydroplaning threshold.Based on the measures,a simplified model was developed that is able to predict the hydroplaning speed depending on pavement's texture characteristics.The results indicated that a 77%increase in mean texture depth cause 9%increase in hydroplaning threshold speed.展开更多
Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating ...Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster.展开更多
The binder properties were determined in accordance with Chinese standard such as ductility test, which allowed to measure the distance in centimeters that a standard briquette of asphalt had been stretched before bre...The binder properties were determined in accordance with Chinese standard such as ductility test, which allowed to measure the distance in centimeters that a standard briquette of asphalt had been stretched before breaking. Then, penetration test was carried out in order to know some properties of the asphalt, which are the hardness and the softness. Finally, softening point test was carried out in order to determine the temperature at which the bitumen attains a particular degree of softening under the specification of the test. According to Chinese standard for performance tests, firstly, Marshall test was carried out in order to measure the theoretical density, air voids, voids filled with asphalt, stability, flow, and voids in mineral aggregate of asphalt specimens. Secondly, Freeze-thaw splitting test was carried out in order to determine Splitting strength ratio. Finally, dynamic stability (rutting) test was carried out to determine average dynamic stability. Beside the tests carried out, the gradation of the extracted aggregate in accordance with American Association of State Highway and Transportation Officials was carried out to determine the dimensions of the particles weight distribution. Furthermore, both the percentage of recycled asphalt pavement materials and binder in mixture were determined to know how much of the new material during the mixture was needed. However, two specimens were used to evaluate the performance of recycled asphalt pavement materials. One specimen of recycled asphalt pavement materials was ten years old, and another one of recycled asphalt pavement materials was five years old. The results show that the conditions of the environment such as moisture, temperature, and age, decrease the ductility and penetration properties of binder when increase the softening point property of binder. Then the gradation of recycled asphalt pavement aggregate is of the required values to reuse in the mixture, while the flow ratio, the splitting strength ratio, and the dynamic stability ratio, are less than the required value test. With regard to the properties of mixture of recycled asphalt pavement material binder with rejuvenator, the results show that when the penetration and ductility versus percentage of rejuvenator increase, softening point versus percentage of rejuvenator decreases. Also, when the bitumen and rejuvenator percentage increase, the air voids decrease. Consequently, voids filled with asphalt and voids in the mineral aggregate increase. Moreover, the theoretical density and stability values decrease in a mixture containing four-point fifty percent to six percent of bitumen and rejuvenator, whereas the flow values increase. More interestingly, with four percent to four-point fifty percent mixture ratio of bitumen and rejuvenator, density, stability, and flow values increase. The splitting strength ratio values of mixtures and the dynamic stability test (rutting test) values of mixtures with forty percent of specimen one and specimen two respectively are greater than the required value of the standard test. In addition, the high percentage of rejuvenator increases the rut of pavement, in the same manner, the low percentage of rejuvenator induces low rut. In conclusion, the binder content from recycled materials without rejuvenator seems not be sufficient to be reused on the new pavement while the aged recycled material seems to be performed better than no aged recycled material with rejuvenator into bitumen. Then, the rejuvenator can influence the bitumen properties and performance of the pavement. Finally, the pavement made by only recycled pavement materials as a base layer appears to be more economical but cannot be more effective than the pavement made by mixture of new and recycled pavement materials as a base layer.展开更多
This paper presents the way to harvest mechanical energy from asphalt pavement by piezoelectric generator. Results show that the potential energy in asphalt pavement can be up to 150 kW/h per lane per kilometre. Part ...This paper presents the way to harvest mechanical energy from asphalt pavement by piezoelectric generator. Results show that the potential energy in asphalt pavement can be up to 150 kW/h per lane per kilometre. Part of the mechanical energy can be harvested by piezoelectric transducers. The performance of seven typical transducers is examined through finite element analysis. Results show that PZT piles and multilayer, cymbal and bridge can work in asphalt pavement environment. PZT piles and multilayer have higher energy converting rate, However, the total harvested energy is small if these transducers are embedded directly in pavement. A prototype pavement generator is developed using PZT piles to increase the harvested energy. The generator can harvest more than 50 kW/h energy from the pavement under heavy traffic. 8-16 PZT piles are recommended for one generator. Round shape is suggested for the PZT piles to reduce the concentration of stress. And multilayer structure is recommended for PZT piles to decrease the electric potential of generator. The generator can be extended as sensor in the asphalt pavement, which can be used to monitor the traffic, pavement stress and temperature.展开更多
A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal con...A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal contact stress induced by the acceleration/deceleration of vehicles.The key design parameters are the maximum horizontal tensile stresses at the surface of the asphalt layer,the maximum horizontal tensile stresses at the bottom of the asphalt layer and the maximum vertical shear stresses at the surface of the as- phalt layer were calculated.The influencing factors such as double-wheel weight;asphalt layer thickness;base course stiffness modulus and thickness;and the contact conditions among the structure layers on these key design parameters were also examined separately to propose construction procedures of highway tunnel asphalt pavement.展开更多
To clarify the importance of various influencing factors on asphalt pavement rutting deformation and determine a screening method of model indicators,the data of the RIOHTrack full-scale track were examined using the ...To clarify the importance of various influencing factors on asphalt pavement rutting deformation and determine a screening method of model indicators,the data of the RIOHTrack full-scale track were examined using the factor analysis method(FAM).Taking the standard test pavement structure of RIOHTrack as an example,four rutting influencing factors from different aspects were determined through statistical analysis.Furthermore,the common influencing factors among the rutting influencing factors were studied based on FAM.Results show that the common factor can well characterize accumulative ESALs,center-point deflection,and temperature,besides humidity,which indicates that these three influencing factors can have an important impact on rutting.Moreover,an empirical rutting prediction model was established based on the selected influencing factors,which proved to exhibit high prediction accuracy.These analysis results demonstrate that the FAM is an effective screening method for rutting prediction model indicators,which provides a reference for the selection of independent model indicators in other rutting prediction model research when used in other areas and is of great significance for the prediction and control of rutting distress.展开更多
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n...Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.展开更多
Nowadays asphalt pavement structure bearing is not the main subject for pursuers to study.Comparatively,the pavement performance is more important and emphasized.Based on this,rutting and cracking analysis is introduc...Nowadays asphalt pavement structure bearing is not the main subject for pursuers to study.Comparatively,the pavement performance is more important and emphasized.Based on this,rutting and cracking analysis is introduced into pavement optimization.A optimization model based on these two considerations is also established.The genetic algorithms (GAs) is adopted to solve the model.It is an intellective method.This research provides a new idea and technique for asphalt pavement structure optimization.展开更多
The property of reclaimed asphalt pavement(RAP) mixture will be affected mainly by composition of old asphalt/soil and cement content in CIR system. We studied the relationship between A/S and cementitious materials...The property of reclaimed asphalt pavement(RAP) mixture will be affected mainly by composition of old asphalt/soil and cement content in CIR system. We studied the relationship between A/S and cementitious materials. It showed that if there was no soil in RAP, the unconfined compressive strength was only from 0.18 MPa to 1.07 MPa even if adding cement was from 2% to 6%, and RAP samples collapsed during conserving in water. The optimum water content rose from 6.5% to 11% with the declining of A/S from S=0 to A/S=1/5. Five RAP samples all got the maximum compressive strength when A/S=5/5, and the maximum compressive strength of the samples adding 6% cement was 3.17 MPa. It showed that the capacity of RAP was not only affected by A/S, but also by the content of cement. The dynamic modulus of RAP will increase with the rise of loading frequency and decrease with the temperature rising. SEM test showed that C-S-H interlacing formed the netted structure, and it enwrapped the aggregate and improved the strength of RAP.展开更多
This study was to compare theoretical calculation and practical measurement structure response of asphalt pavement. Analysis of the pavement layer moduli was determined from a Back-calculation of Falling Weight Deflec...This study was to compare theoretical calculation and practical measurement structure response of asphalt pavement. Analysis of the pavement layer moduli was determined from a Back-calculation of Falling Weight Deflectometer (FWD) data and the measured stiffness moduli of asphalt layer cores. The pavement response was calculated using a theoretical model and the measured strain response at the bottom different layers. Layered elastic theory was used to back-calculate the layer moduli and three different theory models were used to forward calculate the strain and deflection. The models were: Layered Elastic Theory (LET), the Method of Equivalent Thicknesses (MET) with linear elastic and the Finite Element Method (FEM) where asphalt layer may be viscoelastic. The results showed that the calculation structure response from FEM was consistent with measured results.展开更多
A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special m...A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special modifications and binder blending charts by Asphalt Institute were utilized. Modifications involved the development of a new kind of sample mold and different testing parameters were made to BBR testing procedure to capture the theological properties of bitumen mortars produced by mixing fresh binder with fine RAP materials or RAP aggregate. The stiffness relationship between binder and bitumen mortar was established based on the BBR test results. The blended binder stiffness in bitumen RAP mortar was estimated from the RAP mortar stiffness based on the binder-mortar relationship. And finally, the RAP binder stiffness was estimated from the blended binder and fresh binder stiffness based on the blending charts by Asphalt Institute. The results indicate that the new procedure can capture the rheological properties of bitumen mortar and can be used to estimate the low temperature stiffness of RAP binder without binder extraction and/or any chemical treatments.展开更多
To solve the problem of the lack of comprehensive evaluation of three-dimensional(3D)asphalt pavement roughness,a method for evaluating the asphalt pavement roughness is proposed based on two-dimensional(2D)power spec...To solve the problem of the lack of comprehensive evaluation of three-dimensional(3D)asphalt pavement roughness,a method for evaluating the asphalt pavement roughness is proposed based on two-dimensional(2D)power spectral density(PSD).By calculating the 2D PSD of a 3D asphalt pavement and converting it into the longitudinal average asphalt pavement PSD,the relationship between the evaluation method of the 3D asphalt pavement roughness and the current evaluation standard of roughness is established.Combined with the road-fitting formula used in international standards,the elevation data of the A,B,C,and D grades of the 3D asphalt pavement are simulated by the harmonic superposition method.According to the proposed method,the longitudinal PSD of each level of simulated asphalt pavement is calculated and compared with the standard spectral line of each pavement level.This approach verifies the effectiveness of the proposed method in evaluating the roughness of the 3D asphalt pavement.Compared with the PSD of a certain horizontal profile elevation,it is verified that the fluctuation amplitude of the spectral line calculated by the proposed method is greatly improved.The results show that the proposed method can evaluate the roughness of asphalt pavements more comprehensively and accurately and has strong practicability.展开更多
基金The National Natural Science Foundation of China (No.50708056)Reward Fund for Excellent Young and Middle-Aged Scientists of Shandong Province(No.2008BS09015)+1 种基金the Natural Science Foundation of Shandong Province (No.Q2006F02)Key Technologies R & D Program of Shandong Province (No.2008GG10006009)
文摘For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis of the pavement is conducted considering asphalt mixtures as porous media. Results reveal that the development and dissipation of the dynamic pore pressure are coinstantaneous and this makes both the positive and negative dynamic pore pressure and seepage force alternate with time. Repetitive hydrodynamic pumping and sucking during moisture damage is proved. The dynamic pore pressure increases with vehicle velocity. Effective stress and deflection of pavement decrease due to the dynamic pore water pressure. However, the emulsification and replacement of the asphalt membrane by water are accelerated. The maximum dynamic pore pressure occurs at the bottom of the surface course. So it is suggested that a drain course should be set up to change the draining condition from single-sided drain to a two-sided drain, and thus moisture damage can be effectively limited.
基金The National High Technology Research and Development Program of China (863 Program)(No.2006AA11Z110)
文摘The rutting simulation method considering temperature variance and traffic time distribution is developed through ABAQUS software. The short-term behavior of pavement rut under the effects of temperature and traffic loading is addressed. Then sensitivity analysis on the factors of temperature and traffic loading is conducted and a short-term rutting prediction model is developed. The results show that under the same conditions of temperature and the number of load repetitions, rut increases sharply with the contact pressure in a linear manner, while as for the heavy load situation, the increases likely to be more nonlinear and faster; the significant factors affecting rutting include daily maximum air temperature, daily solar radiation volume, daily minimum air temperature, tire-pavement contact pressure and the number of load repetitions. Finally, a short-term rutting prediction model reflecting the effects of air temperature and traffic loading is developed, and it can be used for prediction and pre-waming for pavement rut prevention.
基金The Science and Technology Project of Jiangsu Provincial Communications Department(No.7621000078)
文摘To investigate the cost-effectiveness of different maintenance treatments of highways in Jiangsu Province, the historical pavement maintenance records, traffic load information and pavement performance data in the pavement management system (PMS) are recorded and analyzed. Compared with the growth model, the linear model, the logarithm model and the exponential model, the cubic model has higher regression accuracy R2 and it can capture the sigmoid shape of the deterioration curve. So it is selected to simulate the pavement rotting development. The benefit over cost ratio is calculated to quantify the treatment cost- effectiveness. The analysis results show that thin hot mix asphalt (HMA) overlays and micro surfacing are more cost- effective than the. other two treatments on light and moderate traffic roads. Hot in-place recycling and thick HMA overlays have much longer service lives and greater cost-effectiveness under heavy or extra heavy traffic.
基金The Key Project of Science and Technology of Ministryof Education (No.105085)the Specialized Research Fund of Science andTechnology Production Translation of Jiangsu Province (No.BA2006068).
文摘In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.
文摘Through the shear tests on composite specimens using four different kinds of tack coat material (epoxy resin, SBS modified emulsified asphalt, SBS modified asphalt and H# bridge waterproof material), the bond condition between layers of porous asphalt pavement under traffic load, temperature variation and moisture situation is evaluated. The test results show that the bond strength decreases with the rise in temperature, and the relationship between shear strength and temperature can be expressed by a logarithm curve at a high reliability. Under the action of traffic load, the value of shear strength of the mixture right under the centre of the wheel track is smaller than that of other parts of the pavement. It is also found that some effects concerning moisture have comparative effects on the bonding of the two layers. Given all the results achieved during the study, it will be quite rewarding to make rational comparisons during selecting the sound type of tack coat.
文摘A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.
基金Project(2012zzts019)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(201306370121)supported by State Scholarship Fund of ChinaProject(51248006)supported by the National Natural Science Foundation,China
文摘This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radiation and convection.An innovative time-dependent function was proposed to predict the pavement surface temperature with solar radiation and air temperature using dimensional analysis in order to simplify the complex heat exchange on the pavement surface.The parameters for the time-dependent pavement surface temperature function were obtained through the regression analysis of field measurement data.Assuming that the initial pavement temperature distribution was linear and the influence of the base course materials on the temperature of the upper asphalt layers was negligible,a close-form analytical solution of the temperature in asphalt layers was derived using Green's function.Finally,two numerical examples were presented to validate the model solutions with field temperature measurements.Analysis results show that the solution accuracy is in agreement with field data and the relative errors at a shallower depth are greater than those at a deeper one.Although the model is not sensitive to dramatic changes in climatic factors near the pavement surface,it is applicable for predicting pavement temperature field in cloudless days.
基金Projects(51908071,51708071)supported by National Natural Science Foundation of ChinaProject(2020JJ5975)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(18C0194)supported by the Scientific Research Project of Education Department of Hunan Province,ChinaProject(kfj190301)supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha University of Science&Technology),China。
文摘In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.
文摘Hydroplaning speed can be affected by pavement texture depth,thickness of water film,tire pressure and tread depth.In this study,to understand the influence of pavement texture on the hydroplaning speed,a new lab-scale apparatus has been designed and manufactured.The lack of proportion between linear movement of vehicle shaft and the wheel rotation was found to be a good index to determine hydroplaning threshold.A 5%drop in the ratio of wheel-to-axle rotation has been assumed as an index to determine hydroplaning threshold.Based on the measures,a simplified model was developed that is able to predict the hydroplaning speed depending on pavement's texture characteristics.The results indicated that a 77%increase in mean texture depth cause 9%increase in hydroplaning threshold speed.
基金Project(2017JM5077)supported by the Natural Science Basic Research Plan in Shaanxi Province,ChinaProjects(300102259109,300102259306)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster.
基金Funded by the Technology Research and Development Plan Program of Heilongjiang Province(No.GA19A501)。
文摘The binder properties were determined in accordance with Chinese standard such as ductility test, which allowed to measure the distance in centimeters that a standard briquette of asphalt had been stretched before breaking. Then, penetration test was carried out in order to know some properties of the asphalt, which are the hardness and the softness. Finally, softening point test was carried out in order to determine the temperature at which the bitumen attains a particular degree of softening under the specification of the test. According to Chinese standard for performance tests, firstly, Marshall test was carried out in order to measure the theoretical density, air voids, voids filled with asphalt, stability, flow, and voids in mineral aggregate of asphalt specimens. Secondly, Freeze-thaw splitting test was carried out in order to determine Splitting strength ratio. Finally, dynamic stability (rutting) test was carried out to determine average dynamic stability. Beside the tests carried out, the gradation of the extracted aggregate in accordance with American Association of State Highway and Transportation Officials was carried out to determine the dimensions of the particles weight distribution. Furthermore, both the percentage of recycled asphalt pavement materials and binder in mixture were determined to know how much of the new material during the mixture was needed. However, two specimens were used to evaluate the performance of recycled asphalt pavement materials. One specimen of recycled asphalt pavement materials was ten years old, and another one of recycled asphalt pavement materials was five years old. The results show that the conditions of the environment such as moisture, temperature, and age, decrease the ductility and penetration properties of binder when increase the softening point property of binder. Then the gradation of recycled asphalt pavement aggregate is of the required values to reuse in the mixture, while the flow ratio, the splitting strength ratio, and the dynamic stability ratio, are less than the required value test. With regard to the properties of mixture of recycled asphalt pavement material binder with rejuvenator, the results show that when the penetration and ductility versus percentage of rejuvenator increase, softening point versus percentage of rejuvenator decreases. Also, when the bitumen and rejuvenator percentage increase, the air voids decrease. Consequently, voids filled with asphalt and voids in the mineral aggregate increase. Moreover, the theoretical density and stability values decrease in a mixture containing four-point fifty percent to six percent of bitumen and rejuvenator, whereas the flow values increase. More interestingly, with four percent to four-point fifty percent mixture ratio of bitumen and rejuvenator, density, stability, and flow values increase. The splitting strength ratio values of mixtures and the dynamic stability test (rutting test) values of mixtures with forty percent of specimen one and specimen two respectively are greater than the required value of the standard test. In addition, the high percentage of rejuvenator increases the rut of pavement, in the same manner, the low percentage of rejuvenator induces low rut. In conclusion, the binder content from recycled materials without rejuvenator seems not be sufficient to be reused on the new pavement while the aged recycled material seems to be performed better than no aged recycled material with rejuvenator into bitumen. Then, the rejuvenator can influence the bitumen properties and performance of the pavement. Finally, the pavement made by only recycled pavement materials as a base layer appears to be more economical but cannot be more effective than the pavement made by mixture of new and recycled pavement materials as a base layer.
基金Funded in Part by the National Natural Science Foundation of China(No.50908177)the National High-tech Research and Development Program of China(863 Program)(No.2012AA112506)
文摘This paper presents the way to harvest mechanical energy from asphalt pavement by piezoelectric generator. Results show that the potential energy in asphalt pavement can be up to 150 kW/h per lane per kilometre. Part of the mechanical energy can be harvested by piezoelectric transducers. The performance of seven typical transducers is examined through finite element analysis. Results show that PZT piles and multilayer, cymbal and bridge can work in asphalt pavement environment. PZT piles and multilayer have higher energy converting rate, However, the total harvested energy is small if these transducers are embedded directly in pavement. A prototype pavement generator is developed using PZT piles to increase the harvested energy. The generator can harvest more than 50 kW/h energy from the pavement under heavy traffic. 8-16 PZT piles are recommended for one generator. Round shape is suggested for the PZT piles to reduce the concentration of stress. And multilayer structure is recommended for PZT piles to decrease the electric potential of generator. The generator can be extended as sensor in the asphalt pavement, which can be used to monitor the traffic, pavement stress and temperature.
文摘A linear full 3D finite element method (FEM) was performed in order to present the key design parameters of highway tunnel asphalt pavement under double-wheel load on rectangular loaded area considering horizontal contact stress induced by the acceleration/deceleration of vehicles.The key design parameters are the maximum horizontal tensile stresses at the surface of the asphalt layer,the maximum horizontal tensile stresses at the bottom of the asphalt layer and the maximum vertical shear stresses at the surface of the as- phalt layer were calculated.The influencing factors such as double-wheel weight;asphalt layer thickness;base course stiffness modulus and thickness;and the contact conditions among the structure layers on these key design parameters were also examined separately to propose construction procedures of highway tunnel asphalt pavement.
基金The National Key Research and Development Program of China(No.2018YFB1600300,2018YFB1600304,2018YFB1600305)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0133)the Scientific Research Foundation of Graduate School of Southeast University.
文摘To clarify the importance of various influencing factors on asphalt pavement rutting deformation and determine a screening method of model indicators,the data of the RIOHTrack full-scale track were examined using the factor analysis method(FAM).Taking the standard test pavement structure of RIOHTrack as an example,four rutting influencing factors from different aspects were determined through statistical analysis.Furthermore,the common influencing factors among the rutting influencing factors were studied based on FAM.Results show that the common factor can well characterize accumulative ESALs,center-point deflection,and temperature,besides humidity,which indicates that these three influencing factors can have an important impact on rutting.Moreover,an empirical rutting prediction model was established based on the selected influencing factors,which proved to exhibit high prediction accuracy.These analysis results demonstrate that the FAM is an effective screening method for rutting prediction model indicators,which provides a reference for the selection of independent model indicators in other rutting prediction model research when used in other areas and is of great significance for the prediction and control of rutting distress.
基金Project(51778482)supported by the National Natural Science Foundation of China。
文摘Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.
文摘Nowadays asphalt pavement structure bearing is not the main subject for pursuers to study.Comparatively,the pavement performance is more important and emphasized.Based on this,rutting and cracking analysis is introduced into pavement optimization.A optimization model based on these two considerations is also established.The genetic algorithms (GAs) is adopted to solve the model.It is an intellective method.This research provides a new idea and technique for asphalt pavement structure optimization.
基金Funded by the National High-tech Research and Development Program of China ('863' Program) (2009AA11Z106)
文摘The property of reclaimed asphalt pavement(RAP) mixture will be affected mainly by composition of old asphalt/soil and cement content in CIR system. We studied the relationship between A/S and cementitious materials. It showed that if there was no soil in RAP, the unconfined compressive strength was only from 0.18 MPa to 1.07 MPa even if adding cement was from 2% to 6%, and RAP samples collapsed during conserving in water. The optimum water content rose from 6.5% to 11% with the declining of A/S from S=0 to A/S=1/5. Five RAP samples all got the maximum compressive strength when A/S=5/5, and the maximum compressive strength of the samples adding 6% cement was 3.17 MPa. It showed that the capacity of RAP was not only affected by A/S, but also by the content of cement. The dynamic modulus of RAP will increase with the rise of loading frequency and decrease with the temperature rising. SEM test showed that C-S-H interlacing formed the netted structure, and it enwrapped the aggregate and improved the strength of RAP.
基金Sponsored by the Program of the Highway Department of Ministry of Communications of China (Grant No 2004 318 000 04)
文摘This study was to compare theoretical calculation and practical measurement structure response of asphalt pavement. Analysis of the pavement layer moduli was determined from a Back-calculation of Falling Weight Deflectometer (FWD) data and the measured stiffness moduli of asphalt layer cores. The pavement response was calculated using a theoretical model and the measured strain response at the bottom different layers. Layered elastic theory was used to back-calculate the layer moduli and three different theory models were used to forward calculate the strain and deflection. The models were: Layered Elastic Theory (LET), the Method of Equivalent Thicknesses (MET) with linear elastic and the Finite Element Method (FEM) where asphalt layer may be viscoelastic. The results showed that the calculation structure response from FEM was consistent with measured results.
基金Project(200831800044) supported by the Ministry of Communication of ChinaProject(50878054) supported by the National Natural Science Foundation of ChinaProject(06Y31) supported by the Department of Communication of Zhejiang Province,China
文摘A new testing procedure to estimate the low-temperature stiffness of the reclaimed asphalt pavement (RAP) binder was developed. In the testing procedure, the SuperpaveTM Bending Beam Rheometer (BBR) with special modifications and binder blending charts by Asphalt Institute were utilized. Modifications involved the development of a new kind of sample mold and different testing parameters were made to BBR testing procedure to capture the theological properties of bitumen mortars produced by mixing fresh binder with fine RAP materials or RAP aggregate. The stiffness relationship between binder and bitumen mortar was established based on the BBR test results. The blended binder stiffness in bitumen RAP mortar was estimated from the RAP mortar stiffness based on the binder-mortar relationship. And finally, the RAP binder stiffness was estimated from the blended binder and fresh binder stiffness based on the blending charts by Asphalt Institute. The results indicate that the new procedure can capture the rheological properties of bitumen mortar and can be used to estimate the low temperature stiffness of RAP binder without binder extraction and/or any chemical treatments.
基金The National Natural Science Foundation of China(No.51975117)。
文摘To solve the problem of the lack of comprehensive evaluation of three-dimensional(3D)asphalt pavement roughness,a method for evaluating the asphalt pavement roughness is proposed based on two-dimensional(2D)power spectral density(PSD).By calculating the 2D PSD of a 3D asphalt pavement and converting it into the longitudinal average asphalt pavement PSD,the relationship between the evaluation method of the 3D asphalt pavement roughness and the current evaluation standard of roughness is established.Combined with the road-fitting formula used in international standards,the elevation data of the A,B,C,and D grades of the 3D asphalt pavement are simulated by the harmonic superposition method.According to the proposed method,the longitudinal PSD of each level of simulated asphalt pavement is calculated and compared with the standard spectral line of each pavement level.This approach verifies the effectiveness of the proposed method in evaluating the roughness of the 3D asphalt pavement.Compared with the PSD of a certain horizontal profile elevation,it is verified that the fluctuation amplitude of the spectral line calculated by the proposed method is greatly improved.The results show that the proposed method can evaluate the roughness of asphalt pavements more comprehensively and accurately and has strong practicability.