Biomass allocation and assimilation efficiency of natural Amour linden (Tilia amurensis) samplings in different light regimes were analyzed in the paper. The results showed that shoot increment of samplings in gap was...Biomass allocation and assimilation efficiency of natural Amour linden (Tilia amurensis) samplings in different light regimes were analyzed in the paper. The results showed that shoot increment of samplings in gap was the highest and that of samplings under canopy was the least. Samplings in gap expressed apical dominance strongly but samplings in full sun and under canopy behaved intensive branching. Lateral competition or moderate shading was favored to bole construction. The patters of biomass allocation of samplings in different light environment were rather similar. The biomass translocated to stem was more than that to other organs, and about one half of photosynthate was used to support leaf turn over. On the contrary, photosynthates of samplings in full sun were mostly consumed in leaves bearing and energy balancing. The carbon assimilation for leaves of samplings in gap was the most efficient, and more carbons were fixed and translocated to non-photosynthetic organs, especially to stemwood.展开更多
文摘Biomass allocation and assimilation efficiency of natural Amour linden (Tilia amurensis) samplings in different light regimes were analyzed in the paper. The results showed that shoot increment of samplings in gap was the highest and that of samplings under canopy was the least. Samplings in gap expressed apical dominance strongly but samplings in full sun and under canopy behaved intensive branching. Lateral competition or moderate shading was favored to bole construction. The patters of biomass allocation of samplings in different light environment were rather similar. The biomass translocated to stem was more than that to other organs, and about one half of photosynthate was used to support leaf turn over. On the contrary, photosynthates of samplings in full sun were mostly consumed in leaves bearing and energy balancing. The carbon assimilation for leaves of samplings in gap was the most efficient, and more carbons were fixed and translocated to non-photosynthetic organs, especially to stemwood.