[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic ...[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.展开更多
[ Objective] This study aimed to investigate the effects of heat shock factor AtHsfAla on Caspase-3 activity in Arabidopsis thaliana under high tempera-ture stress, thus revealing the relationship between heat shoc...[ Objective] This study aimed to investigate the effects of heat shock factor AtHsfAla on Caspase-3 activity in Arabidopsis thaliana under high tempera-ture stress, thus revealing the relationship between heat shock factor AtHsfAl a and programmed cell death in A. thaliana. [ Method ] Different genotypes of A. thaliana (AtHsfAla-silenced transgenic and wild-type) seedlings were treated at 42 ℃. According to the fragmentation level of fluorogenic substrate Ac-DEVD- pNA, Caspase-3 activity was determined by spectrophotometry. [ Result] After high temperature treatment, Caspase-3 activity in A. thaliana was enhanced signifi-cantly. Caspase-3 activity in AtHsfAla-si/enced transgenic A. thaliana was higher than that in wild-type A. thaliana, which indicated that AtHsfAla could inhibit Caspase-3 activity in A. thaliana under high temperature stress. [ Conclusion] Under high temperature stress, heat shock factor AtHsfAla might exert inhibitory effects on programmed cell death by reducing Caspase-3 activity. This study provided the basis for clarifying the mechanism of stress resistance in plants.展开更多
[ Objective] This study ~med to investigate the influence of high temperature on the expression of heat shock transcription factor AtHsfAla in different genotypes of Arabidopsis. [ Method ] Arabidopsis plants overexpr...[ Objective] This study ~med to investigate the influence of high temperature on the expression of heat shock transcription factor AtHsfAla in different genotypes of Arabidopsis. [ Method ] Arabidopsis plants overexpressing heat shock transcription factor AtHsfA1 a were used as experimental materials and treated un- der high temperature at 39℃ for 1 rain and 5 min; total RNA of AtI-IsfAla was extracted, and the reverse transcription and amplification were conducted using RT- PCR technology, the amplification products were detected by electrophoresis. [ Result ] The expression levels of AtHsfA1 a in Arabidopsis plants overexpressing heat shock transcription factor AtHsfAla at high temperature and room temperature were higher than wild-type Arabidopsis; the expression levels of AtHsfAla in both wild-type Arab/dops/s and transgenic Arabidopsls plants overexpressing heat shock transcription factor AtHsfAla at high temperature of 39 ~C were higher than that at room temperature of 25 ~C, but the expression levels of AtHsfAla in wild-type Arab/dops/s and transgenic Arab/dops/s plants overexpressing heat shock transcription factor AtHsfAla varied little after high temperature treatment at 39 ~C for 1 rain or 5 rain. [ Conclusion] The expression of AtHsfAla is induced rapidly by high tem- perature, thus regulating the expression of early adversity-resistant genes. This study will lay the foundation demonstrating the mechanism of Arabidopsis heat shock transcription factor AtHsfAla.展开更多
[Objective] This study aimed to investigate the effects of heat shock factor AtHsfAla on programmed cell death in Arabidopsis thaliana under cold stress. [ Method] AtHsfAla-silenced transgenic (NT) and wild-type (W...[Objective] This study aimed to investigate the effects of heat shock factor AtHsfAla on programmed cell death in Arabidopsis thaliana under cold stress. [ Method] AtHsfAla-silenced transgenic (NT) and wild-type (WT) A. thaliana seedlings were used as experimental materials to induce the formation of callus; the callus were cultured to single cells by suspension culture, subjected to cold stress, stained with DAPI, prepared into cell smears and observed under a fluorescence microscope. [ Result] Under cold stress, cell nucleus of wild-type A. thaliana displayed morphological changes, but no apoptotic bodies were found; apoptotic bodies were observed in AtHsfAla-silenced transgenic A. thaliana cells, and the cytoplasm was remarkably concentrated. [ Conclusion] Under cold stress, heat shock factor AtHsfAla exerted inhibitory effects on programmed cell death in A. thaliana, which was of great significance for clarifying the mechanism of stress responses in plants.展开更多
文摘[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.
基金Supported by National Natural Science Foundation of China(31260061,31060039)Project of Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province(GXZD201601)+1 种基金Key Discipline Construction Project of Kunming UniversityNational College Students' Innovation Project of China
文摘[ Objective] This study aimed to investigate the effects of heat shock factor AtHsfAla on Caspase-3 activity in Arabidopsis thaliana under high tempera-ture stress, thus revealing the relationship between heat shock factor AtHsfAl a and programmed cell death in A. thaliana. [ Method ] Different genotypes of A. thaliana (AtHsfAla-silenced transgenic and wild-type) seedlings were treated at 42 ℃. According to the fragmentation level of fluorogenic substrate Ac-DEVD- pNA, Caspase-3 activity was determined by spectrophotometry. [ Result] After high temperature treatment, Caspase-3 activity in A. thaliana was enhanced signifi-cantly. Caspase-3 activity in AtHsfAla-si/enced transgenic A. thaliana was higher than that in wild-type A. thaliana, which indicated that AtHsfAla could inhibit Caspase-3 activity in A. thaliana under high temperature stress. [ Conclusion] Under high temperature stress, heat shock factor AtHsfAla might exert inhibitory effects on programmed cell death by reducing Caspase-3 activity. This study provided the basis for clarifying the mechanism of stress resistance in plants.
基金Supported by National Natural Science Foundation of China(31060039,31260061)Natural Science Foundation of Yunnan Province(2010ZC163)+1 种基金College-level Project of Kunming University(YJL11025)College-level Project for Key Discipline Construction of Kunming University
文摘[ Objective] This study ~med to investigate the influence of high temperature on the expression of heat shock transcription factor AtHsfAla in different genotypes of Arabidopsis. [ Method ] Arabidopsis plants overexpressing heat shock transcription factor AtHsfA1 a were used as experimental materials and treated un- der high temperature at 39℃ for 1 rain and 5 min; total RNA of AtI-IsfAla was extracted, and the reverse transcription and amplification were conducted using RT- PCR technology, the amplification products were detected by electrophoresis. [ Result ] The expression levels of AtHsfA1 a in Arabidopsis plants overexpressing heat shock transcription factor AtHsfAla at high temperature and room temperature were higher than wild-type Arabidopsis; the expression levels of AtHsfAla in both wild-type Arab/dops/s and transgenic Arabidopsls plants overexpressing heat shock transcription factor AtHsfAla at high temperature of 39 ~C were higher than that at room temperature of 25 ~C, but the expression levels of AtHsfAla in wild-type Arab/dops/s and transgenic Arab/dops/s plants overexpressing heat shock transcription factor AtHsfAla varied little after high temperature treatment at 39 ~C for 1 rain or 5 rain. [ Conclusion] The expression of AtHsfAla is induced rapidly by high tem- perature, thus regulating the expression of early adversity-resistant genes. This study will lay the foundation demonstrating the mechanism of Arabidopsis heat shock transcription factor AtHsfAla.
基金Supported by National Natural Science Foundation of China(31260061,31060039)Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province(GXZD201601)+1 种基金Key Discipline Construction Project of Kunming UniversityNational College Students Innovation Project of China
文摘[Objective] This study aimed to investigate the effects of heat shock factor AtHsfAla on programmed cell death in Arabidopsis thaliana under cold stress. [ Method] AtHsfAla-silenced transgenic (NT) and wild-type (WT) A. thaliana seedlings were used as experimental materials to induce the formation of callus; the callus were cultured to single cells by suspension culture, subjected to cold stress, stained with DAPI, prepared into cell smears and observed under a fluorescence microscope. [ Result] Under cold stress, cell nucleus of wild-type A. thaliana displayed morphological changes, but no apoptotic bodies were found; apoptotic bodies were observed in AtHsfAla-silenced transgenic A. thaliana cells, and the cytoplasm was remarkably concentrated. [ Conclusion] Under cold stress, heat shock factor AtHsfAla exerted inhibitory effects on programmed cell death in A. thaliana, which was of great significance for clarifying the mechanism of stress responses in plants.