The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In...The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDI...MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations.展开更多
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis...Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.展开更多
Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (M...Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (MD) simulations. The results show that the {1^-1^-21}-type twinning acts as the most preferential mode of twinning. Once such twins are formed, they are almost ready to grow. The TBM of such twins is led by pure atomic shuffling events. A secondary mode of twinning can also occur in our simulations. The {112^-2} twinning is observed at 10 K as the secondary twin. This secondary mode of twinning shows different energy barriers for nucleation as well as for growth compared with the {1^-1^-21}-type twining. In particular, TBMs in this case is triggered intrinsically by pyramidal slip at its twin boundary.展开更多
Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discret...Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve.An atoms/continuum overlapping belt is devised to facilitate the transition between the two scales.The continuum constraint on the atomic assembly is imposed through the mechanics at- mosphere along the overlapping belt.Transmissions of mechanics parameters such as displacements,stresses,masses and momenta across the belt are realized.The present model allows us to explore interfacial fracture processes under different mode mixity.The effect of atomistic zigzag interface on the fracture process is revealed:it hinders dislocation emission from the crack tip,especially under high mode mixity.展开更多
The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomi...The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Em- bedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration un- der a remote K field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation.展开更多
How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic sim...How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic simulation examples are used to validate various existing stress definitions. It is found that the classical virial stress fails in predicting the stresses in these examples, because the velocity depends on the choice of the local average volume or the reference frame velocity and other factors. In contrast, the Lagrangian cross-section stress and Lagrangian virial stress are validated by these examples, and the instantaneous Lagrangian atomic stress definition is also proposed for dynamical problems.展开更多
It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precip...It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precipitates and matrix.In upscale modeling of magnesium alloys,these energy data are of great significance.In this work,we calculated the surface and interfacial energies of Mg_(17)Al_(12)-Mg system by carefully selecting the surface or interface termination,using atomistic simulations.The results show that,the higher fraction of Mg atoms on the surface,the lower the surface energy of Mg_(17)Al_(12).The interfacial energy of Mg/Mg_(17)Al_(12)was calculated in which the Burgers orientation relationship(OR)was satisfied.It was found that the(011)P|(0002)Mg interface has the lowest interfacial energy(248 mJ/m 2).Because the Burgers OR breaks when{10¯12}twin occurs,which reorients the matrix,the interfacial energy for Mg_(17)Al_(12)and a{10¯12}twin was also calculated.The results show that after twinning,the lowest interfacial energy increases by 244 mJ/m^(2),and the interface becomes highly incoherent due to the change in orientation relationship between Mg_(17)Al_(12)and the matrix.展开更多
Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employ...Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self- consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The ei^ect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.展开更多
Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three s...Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study.展开更多
A large number of Embedded Atom Method (EAM) potentials have been developed for the Ni/Al system. These potentials are compared to a common data base. It is found that there is significant difference in quality in the...A large number of Embedded Atom Method (EAM) potentials have been developed for the Ni/Al system. These potentials are compared to a common data base. It is found that there is significant difference in quality in these potentials. One of the potentials has also been extended to represent the properties of hydrogen in Ni/Al intermetallics. This potential describes the solution and migration behavior of hydrogen in both Ni and Al.A number of calculations using the Ni/Al/H potential have been performed. It is found that hydrogen strongly prefers sites in Mi3AI that are surrounded by 6 Ni atoms. Calculations of trapping of hydrogen to a number of grain boundaries in Ni3Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Mi3AI boundaries.In order to investigate the potential embrittlement of γ/γ'alloys, trapping of hydrogen to a spherical Hi3Al precipitate in Ni as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ'interface. (Supported by the U. S. DOE through Contract DE-AC04-94AL85000.)展开更多
A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation do...A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation doses at different temperatures.The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial.展开更多
The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation e...The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation energies of interstitial He in and near Shockley partial cores are calculated. The results show that interstitial He atoms at tetrahedral sites in the perfect fee lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy. The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites. In addition, the effect of He on the dissociation of screw dislocations are investigated. It is found that Fie atoms homogeneously distributed in the glide plane can reduce the stacking fault width.展开更多
Densification is a major feature of silica glass that has received widespread attention.This work investigates the fracture behavior of densified silica glass upon uniaxial tension based on atomistic simulations.It is...Densification is a major feature of silica glass that has received widespread attention.This work investigates the fracture behavior of densified silica glass upon uniaxial tension based on atomistic simulations.It is shown that the tensile strength of the silica glass approximately experiences a parabolic reduction with the initial density,while the densified samples show a faster power growth with the increase of strain rate.Meanwhile,the fracture strain and strain energy increase significantly when the densification exceeds a certain threshold,but fracture strain tends to the same value and strain energy becomes closer for different densified samples at extreme high strain rate.Microscopic views indicate that all the cracks are formed by the aggregation of nanoscale voids.The transition from brittleness fracture to ductility fracture can be found with the increase of strain rate,as a few fracture cracks change into a network distribution of many small cracks.Strikingly,for the high densified sample,there appears an evident plastic flow before fracture,which leads to the crack number less than the normal silica glass at the high strain rate.Furthermore,the coordinated silicon analysis suggests that high strain rate tension will especially lead to the transition from 4-to 3-fold Si when the high densified sample is in plastic flow.展开更多
A set of potential parameters for modeling zircon was obtained by atomistic simulation techniques and a reasonable structural model of zircon was established by fitting some important properties of zircon.Based on the...A set of potential parameters for modeling zircon was obtained by atomistic simulation techniques and a reasonable structural model of zircon was established by fitting some important properties of zircon.Based on the equilibrium configuration of zircon, authors calculated the formation energies of basic point defects and intrinsic disorders. The heats of solution of substituting Pu for Zr showed that there was an immiscible gap at the composition of (Pu75%-Zr25%, in mole fraction), which suggests that the amount of Pu substituting for Zr in zircon be≤50%.展开更多
The embedded atom type potentials and static relaxation method combined with a steepest decent computational technique have been used to simulate the interaction between the grain boundary (GB) and dislocations in Ni_...The embedded atom type potentials and static relaxation method combined with a steepest decent computational technique have been used to simulate the interaction between the grain boundary (GB) and dislocations in Ni_3Al alloys.The focus has been placed on the energy feature of the interaction,the distortion of GB structural units,and the dislocation core structure near the GB.Im- plication has also been made on the results for the understanding of the mechanism responsible for B-enhanced ductility.展开更多
We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is foun...We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is found to include three respective stages: elastic, plastic and hardening regions. The bulk modulus increases with the initial densification and will undergo a rapid increase after complete densification. The yield pressure varies from 5 to 12 GPa for different densified samples. In addition, the Si–O–Si bond angle reduces during elastic deformation under compression, and 5-fold Si will increase linearly in the plastic deformation. In the hardening region, the peak splitting and the new peak are both found on the Si–Si and O–O pair radial distribution functions, where the 6-fold Si is increased. Instead, the lateral displacement of the atoms always varies linearly with strain, without evident periodic characteristic. As is expected, the samples are permanently densified after release from the plastic region, and the maximum density of recovered samples is about 2.64 g/cm^3, which contains 15 % 5-fold Si, and the Si–O–Si bond angle is less than the ordinary silica glass. All these findings are of great significance for understanding the deformation process of densified silica glass.展开更多
Atomistic simulations are carried out to investigate the nano-indentation of single crystal Cu and the sliding of the Cu-Zn alloy.As the contact zone is extended due to adhesive interaction between the contact atoms,t...Atomistic simulations are carried out to investigate the nano-indentation of single crystal Cu and the sliding of the Cu-Zn alloy.As the contact zone is extended due to adhesive interaction between the contact atoms,the contact area on a nanoscale is redefined.A comparison of contact area and contact force between molecular dynamics(MD)and contact theory based on Greenwood-Williamson(GW)model is made.Lower roughness causes the adhesive interaction to weaken,showing the better consistency between the calculated results by MD and those from the theoretical model.The simulations of the sliding show that the substrate wear decreases with the mol%of Zn increasing,due to the fact that the diffusion movements of Zn atoms in substrate are blocked during the sliding because of the hexagonal close packed(hcp)structure of Zn.展开更多
In this paper, the buckling behavior of zigzag BN (Boron Nitride) nanotubes under bending is studied through molecular dynamics finite element method with Tersoff potential. The tube with namely (15, 0) BN zigzag ...In this paper, the buckling behavior of zigzag BN (Boron Nitride) nanotubes under bending is studied through molecular dynamics finite element method with Tersoff potential. The tube with namely (15, 0) BN zigzag tube is investigated. The critical bending buckling angle, moment and curvature are studied and examined with respect to the tube length-diameter ratios from 5 to 30. Effects of a SW (Stone-Wales) defect in the middle tube on the bending behavior are also discussed. The results show that the tube length affects significantly the bending behavior of these tubes. All tubes exhibit brittle fracture under bending. The buckling takes place at the middle in the compressive side of these tubes. These results are important information on the buckling behaviors of pristine and Stone-Wales BN nanotubes, which will be useful for their future applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12272118)the National Key Research and Development Program of China (Grant No.2022YFE03030003)。
文摘The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403603)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33030100)+2 种基金the National Natural Science Fund for Distinguished Young Scholar(Grant No.52325105)the National Natural Science Foundation of China(Grant Nos.12374098,11974021,and 12241406)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084).
文摘MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations.
基金Project (50925521) supported by the National Natural Science Fund for Distinguished Young Scholars of China
文摘Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.
基金Project(2012CB932202)supported by the National Basic Research Program of ChinaProjects(50890174,50971088)supported by the National Natural Science Foundation of China
文摘Deformation twinning, i.e., twin nucleation and twin growth (or twin boundary migration, TBM) activated by impinged basal slip at a symmetrical tilt grain boundary in HCP Mg, was examined with molecular dynamics (MD) simulations. The results show that the {1^-1^-21}-type twinning acts as the most preferential mode of twinning. Once such twins are formed, they are almost ready to grow. The TBM of such twins is led by pure atomic shuffling events. A secondary mode of twinning can also occur in our simulations. The {112^-2} twinning is observed at 10 K as the secondary twin. This secondary mode of twinning shows different energy barriers for nucleation as well as for growth compared with the {1^-1^-21}-type twining. In particular, TBMs in this case is triggered intrinsically by pyramidal slip at its twin boundary.
基金The project supported by the National Natural Science Foundation of China
文摘Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve.An atoms/continuum overlapping belt is devised to facilitate the transition between the two scales.The continuum constraint on the atomic assembly is imposed through the mechanics at- mosphere along the overlapping belt.Transmissions of mechanics parameters such as displacements,stresses,masses and momenta across the belt are realized.The present model allows us to explore interfacial fracture processes under different mode mixity.The effect of atomistic zigzag interface on the fracture process is revealed:it hinders dislocation emission from the crack tip,especially under high mode mixity.
基金The project supported by the National Natural Science Foundation of China
文摘The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Em- bedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration un- der a remote K field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation.
基金supported by the National Natural Science Foundation of China (Grant Nos10702034,10732050 and 90816006)the National Basic Research Program of China (973 Program 2007CB936803,2010CB832701)
文摘How to correctly extract Cauchy stress from the atomistic simulations is a crucial issue in studying the mechanical behaviours of atomic systems, but is still in controversy. In this paper, three typical atomistic simulation examples are used to validate various existing stress definitions. It is found that the classical virial stress fails in predicting the stresses in these examples, because the velocity depends on the choice of the local average volume or the reference frame velocity and other factors. In contrast, the Lagrangian cross-section stress and Lagrangian virial stress are validated by these examples, and the instantaneous Lagrangian atomic stress definition is also proposed for dynamical problems.
基金Bin Li gratefully thank support from the U.S.National Science Foundation(CMMI-1635088).
文摘It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precipitates and matrix.In upscale modeling of magnesium alloys,these energy data are of great significance.In this work,we calculated the surface and interfacial energies of Mg_(17)Al_(12)-Mg system by carefully selecting the surface or interface termination,using atomistic simulations.The results show that,the higher fraction of Mg atoms on the surface,the lower the surface energy of Mg_(17)Al_(12).The interfacial energy of Mg/Mg_(17)Al_(12)was calculated in which the Burgers orientation relationship(OR)was satisfied.It was found that the(011)P|(0002)Mg interface has the lowest interfacial energy(248 mJ/m 2).Because the Burgers OR breaks when{10¯12}twin occurs,which reorients the matrix,the interfacial energy for Mg_(17)Al_(12)and a{10¯12}twin was also calculated.The results show that after twinning,the lowest interfacial energy increases by 244 mJ/m^(2),and the interface becomes highly incoherent due to the change in orientation relationship between Mg_(17)Al_(12)and the matrix.
基金supported by the National Natural Science Foundation of China (Grant No. 10476019)the Fundamental Research Funds for the Central Universities of China (Grant No. JY10000904018)
文摘Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self- consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The ei^ect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.
文摘Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study.
文摘A large number of Embedded Atom Method (EAM) potentials have been developed for the Ni/Al system. These potentials are compared to a common data base. It is found that there is significant difference in quality in these potentials. One of the potentials has also been extended to represent the properties of hydrogen in Ni/Al intermetallics. This potential describes the solution and migration behavior of hydrogen in both Ni and Al.A number of calculations using the Ni/Al/H potential have been performed. It is found that hydrogen strongly prefers sites in Mi3AI that are surrounded by 6 Ni atoms. Calculations of trapping of hydrogen to a number of grain boundaries in Ni3Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Mi3AI boundaries.In order to investigate the potential embrittlement of γ/γ'alloys, trapping of hydrogen to a spherical Hi3Al precipitate in Ni as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ'interface. (Supported by the U. S. DOE through Contract DE-AC04-94AL85000.)
基金Project supported by the National Magnetic Confinement Fusion Energy Research Project of China(Grant No.2015GB118001)the Fundamental Research Funds for the Central Universities,China(Grant No.DUT16RC(3)052)+1 种基金the National Basic Research Program of China(Grant No.2012CB619402)the NETL Project(Grant No.DE-FE0027776)
文摘A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation doses at different temperatures.The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial.
基金Supported by the Program of International S&T Cooperation under Grant No 2014DFG60230the Strategically Leading Program of the Chinese Academy of Sciences under Grant No XDA02040100+1 种基金the Shanghai Municipal Science and Technology Commission under Grant No 13ZR1448000the National Natural Science Foundation of China under Grant No 11505266
文摘The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation energies of interstitial He in and near Shockley partial cores are calculated. The results show that interstitial He atoms at tetrahedral sites in the perfect fee lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy. The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites. In addition, the effect of He on the dissociation of screw dislocations are investigated. It is found that Fie atoms homogeneously distributed in the glide plane can reduce the stacking fault width.
基金Project supported by Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘Densification is a major feature of silica glass that has received widespread attention.This work investigates the fracture behavior of densified silica glass upon uniaxial tension based on atomistic simulations.It is shown that the tensile strength of the silica glass approximately experiences a parabolic reduction with the initial density,while the densified samples show a faster power growth with the increase of strain rate.Meanwhile,the fracture strain and strain energy increase significantly when the densification exceeds a certain threshold,but fracture strain tends to the same value and strain energy becomes closer for different densified samples at extreme high strain rate.Microscopic views indicate that all the cracks are formed by the aggregation of nanoscale voids.The transition from brittleness fracture to ductility fracture can be found with the increase of strain rate,as a few fracture cracks change into a network distribution of many small cracks.Strikingly,for the high densified sample,there appears an evident plastic flow before fracture,which leads to the crack number less than the normal silica glass at the high strain rate.Furthermore,the coordinated silicon analysis suggests that high strain rate tension will especially lead to the transition from 4-to 3-fold Si when the high densified sample is in plastic flow.
文摘A set of potential parameters for modeling zircon was obtained by atomistic simulation techniques and a reasonable structural model of zircon was established by fitting some important properties of zircon.Based on the equilibrium configuration of zircon, authors calculated the formation energies of basic point defects and intrinsic disorders. The heats of solution of substituting Pu for Zr showed that there was an immiscible gap at the composition of (Pu75%-Zr25%, in mole fraction), which suggests that the amount of Pu substituting for Zr in zircon be≤50%.
文摘The embedded atom type potentials and static relaxation method combined with a steepest decent computational technique have been used to simulate the interaction between the grain boundary (GB) and dislocations in Ni_3Al alloys.The focus has been placed on the energy feature of the interaction,the distortion of GB structural units,and the dislocation core structure near the GB.Im- plication has also been made on the results for the understanding of the mechanism responsible for B-enhanced ductility.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51727807 and 11875318)Beijing Institute of Technology Research Fund Program for Young ScholarsYue Qi Young Scholar Project in CUMTB。
文摘We investigate the mechanical and microstructural changes of the densified silica glass under uniaxial loading-unloading via atomistic simulations with a modified BKS potential. The stress–strain relationship is found to include three respective stages: elastic, plastic and hardening regions. The bulk modulus increases with the initial densification and will undergo a rapid increase after complete densification. The yield pressure varies from 5 to 12 GPa for different densified samples. In addition, the Si–O–Si bond angle reduces during elastic deformation under compression, and 5-fold Si will increase linearly in the plastic deformation. In the hardening region, the peak splitting and the new peak are both found on the Si–Si and O–O pair radial distribution functions, where the 6-fold Si is increased. Instead, the lateral displacement of the atoms always varies linearly with strain, without evident periodic characteristic. As is expected, the samples are permanently densified after release from the plastic region, and the maximum density of recovered samples is about 2.64 g/cm^3, which contains 15 % 5-fold Si, and the Si–O–Si bond angle is less than the ordinary silica glass. All these findings are of great significance for understanding the deformation process of densified silica glass.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFC0808800)the Natural Science Foundation of Jiangsu Higher Education Institutions,China(Grant No.17KJA460002)the“Six Talent Peaks”of Jiangsu Province,China(Grant No.GDZB-002)。
文摘Atomistic simulations are carried out to investigate the nano-indentation of single crystal Cu and the sliding of the Cu-Zn alloy.As the contact zone is extended due to adhesive interaction between the contact atoms,the contact area on a nanoscale is redefined.A comparison of contact area and contact force between molecular dynamics(MD)and contact theory based on Greenwood-Williamson(GW)model is made.Lower roughness causes the adhesive interaction to weaken,showing the better consistency between the calculated results by MD and those from the theoretical model.The simulations of the sliding show that the substrate wear decreases with the mol%of Zn increasing,due to the fact that the diffusion movements of Zn atoms in substrate are blocked during the sliding because of the hexagonal close packed(hcp)structure of Zn.
文摘In this paper, the buckling behavior of zigzag BN (Boron Nitride) nanotubes under bending is studied through molecular dynamics finite element method with Tersoff potential. The tube with namely (15, 0) BN zigzag tube is investigated. The critical bending buckling angle, moment and curvature are studied and examined with respect to the tube length-diameter ratios from 5 to 30. Effects of a SW (Stone-Wales) defect in the middle tube on the bending behavior are also discussed. The results show that the tube length affects significantly the bending behavior of these tubes. All tubes exhibit brittle fracture under bending. The buckling takes place at the middle in the compressive side of these tubes. These results are important information on the buckling behaviors of pristine and Stone-Wales BN nanotubes, which will be useful for their future applications.