期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Attitude control of a rigid spacecraft with one variable-speed control moment gyro
1
作者 Hai-Chao Gui Lei Jin Shi-Jie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期749-760,共12页
Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two interna... Nonlinear controllability and attitude stabilization are studied for the underactuated nonholonomic dynamics of a rigid spacecraft with one variable-speed control moment gyro (VSCMG), which supplies only two internal torques. Nonlinear controllability theory is used to show that the dynamics are locally controllable from the equilibrium point and thus can be asymptotically stabilized to the equilibrium point via time-invariant piecewise continuous feedback laws or time-periodic continuous feedback laws. Specifically, when the total angular momentum of the spacecraft-VSCMG system is zero, any orientation can be a controllable equilib- rium attitude. In this case, the attitude stabilization problem is addressed by designing a kinematic stabilizing law, which is implemented through a nonlinear proportional and deriva- tive controller, using the generalized dynamic inverse (GDI) method. The steady-state instability inherent in the GDI con- troller is elegantly avoided by appropriately choosing control gains. In order to obtain the command gimbal rate and wheel acceleration from control torques, a simple steering logic is constructed to accommodate the requirements of attitude sta- bilization and singularity avoidance of the VSCMG. Illustrative numerical examples verify the efficacy of the proposed control strategy. 展开更多
关键词 attitude control inverse Nonholonomic system Generalized dynamic Small-time local controlla- bility - Stabilization Variable-speed control moment gyro
下载PDF
H_∞ Inverse Optimal Adaptive Fault-Tolerant Attitude Control for Flexible Spacecraft with Input Saturation 被引量:1
2
作者 龙海辉 赵健康 赖剑清 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期513-527,共15页
An adaptive inverse optimal attitude controller for flexible spacecraft with fault-free actuator is designed based on adaptive control Lyapunov function and inverse optimal methodology subjected to unknown parameter u... An adaptive inverse optimal attitude controller for flexible spacecraft with fault-free actuator is designed based on adaptive control Lyapunov function and inverse optimal methodology subjected to unknown parameter uncertainties,external disturbances and input saturation.The partial loss of actuator effectiveness and the additive faults are considered simultaneously to deal with actuator faults,and the prior knowledge of bounds on the effectiveness factors of the actuators is assumed to be unknown.A fault-tolerant control version is designed to handle the system with actuator fault by introducing a parameter update law to estimate the lower bound of the partial loss of actuator effectiveness faults.The proposed fault-tolerant attitude controller ensures robustness and stabilization,and it achieves H_∞ optimality with respect to a family of cost functionals.The usefulness of the proposed algorithms is assessed and compared with the conventional approaches through numerical simulations. 展开更多
关键词 fault-tolerant attitude control inverse optimization flexible spacecraft adaptive control input saturation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部