由于核反应堆发电的特殊性,核电厂对于生产安全的敏感度远胜于普通电厂。作为日常运维的重要环节,核电机组运行状态监测,对于核电厂的安全稳定运行具有重要意义。当前核电机组状态监测主要采用预设固定阈值报警结合人工监盘的方式,这种...由于核反应堆发电的特殊性,核电厂对于生产安全的敏感度远胜于普通电厂。作为日常运维的重要环节,核电机组运行状态监测,对于核电厂的安全稳定运行具有重要意义。当前核电机组状态监测主要采用预设固定阈值报警结合人工监盘的方式,这种方式无法发现低于报警阈值的异常状态,同时存在一定程度的漏报风险。核电运行数据作为高维海量时序数据,具有正常样本和异常样本分布不均衡以及数据缺乏标签的问题,这限制了有监督深度学习方法的使用。提出了一种基于变分自编码器(variational autoencoders,VAE)构建的无监督深度学习模型对真实运行数据进行异常检测,通过正常运行数据学习正常模式下数据在隐空间的分布,并基于异常数据无法被良好重构的原理,通过重构误差的大小来判别当前状态是否异常。实验以核电机组化学和容积控制系统(removal-chemical and volume control system,RCV)中的上充泵为例,使用真实运行数据结合插入异常的方式对模型进行了验证,并与经典机器学习方法进行了对比。实验结果表明基于变分自编码器的模型能够有效检测到核电真实数据中的异常数据片段及离群点,检测精确率和召回率均高于90%,检测性能相对孤立森林和支持向量机等经典机器学习算法具有优势,具备一定的实用价值和研究意义。展开更多
Encrypted traffic identification pertains to the precise acquisition and categorization of data from traffic datasets containing imbalanced and obscured content.The extraction of encrypted traffic attributes and their...Encrypted traffic identification pertains to the precise acquisition and categorization of data from traffic datasets containing imbalanced and obscured content.The extraction of encrypted traffic attributes and their subsequent identification presents a formidable challenge.The existing models have predominantly relied on direct extraction of encrypted traffic data from imbalanced datasets,with the dataset’s imbalance significantly affecting the model’s performance.In the present study,a new model,referred to as UD-VLD(Unbalanced Dataset-VAE-LSTM-DRN),was proposed to address above problem.The proposed model is an encrypted traffic identification model for handling unbalanced datasets.The encoder of the variational autoencoder(VAE)is combined with the decoder and Long-short term Memory(LSTM)in UD-VLD model to realize the data enhancement processing of the original unbalanced datasets.The enhanced data is processed by transforming the deep residual network(DRN)to address neural network gradient-related issues.Subsequently,the data is classified and recognized.The UD-VLD model integrates the related techniques of deep learning into the encrypted traffic recognition technique,thereby solving the processing problem for unbalanced datasets.The UD-VLD model was tested using the publicly available Tor dataset and VPN dataset.The UD-VLD model is evaluated against other comparative models in terms of accuracy,loss rate,precision,recall,F1-score,total time,and ROC curve.The results reveal that the UD-VLD model exhibits better performance in both binary and multi classification,being higher than other encrypted traffic recognition models that exist for unbalanced datasets.Furthermore,the evaluation performance indicates that the UD-VLD model effectivelymitigates the impact of unbalanced data on traffic classification.and can serve as a novel solution for encrypted traffic identification.展开更多
Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ...Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.展开更多
First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism...First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism based on the time decay factor is proposed,taking into account the influence of historical interaction records.We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data.We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record.Then we propose an autoencoder-based trust clustering algorithm.We perform feature extraction based on autoencoders.Kullback leibler(KL)divergence is used to calculate the reconstruction error.When constructing a convolutional autoencoder,we introduce convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden layer of the autoencoder.The sparse penalty term in the loss function measures the difference through the KL divergence.Trust clustering is performed based on the density based spatial clustering of applications with noise(DBSCAN)clustering algorithm.During the clustering process,edge nodes have a variety of trustworthy attribute characteristics.We assign different attribute weights according to the relative importance of each attribute in the clustering process,and a larger weight means that the attribute occupies a greater weight in the calculation of distance.Finally,we introduced adaptive weights to calculate comprehensive trust evaluation.Simulation experiments prove that our trust evaluation mechanism has excellent reliability and accuracy.展开更多
文摘由于核反应堆发电的特殊性,核电厂对于生产安全的敏感度远胜于普通电厂。作为日常运维的重要环节,核电机组运行状态监测,对于核电厂的安全稳定运行具有重要意义。当前核电机组状态监测主要采用预设固定阈值报警结合人工监盘的方式,这种方式无法发现低于报警阈值的异常状态,同时存在一定程度的漏报风险。核电运行数据作为高维海量时序数据,具有正常样本和异常样本分布不均衡以及数据缺乏标签的问题,这限制了有监督深度学习方法的使用。提出了一种基于变分自编码器(variational autoencoders,VAE)构建的无监督深度学习模型对真实运行数据进行异常检测,通过正常运行数据学习正常模式下数据在隐空间的分布,并基于异常数据无法被良好重构的原理,通过重构误差的大小来判别当前状态是否异常。实验以核电机组化学和容积控制系统(removal-chemical and volume control system,RCV)中的上充泵为例,使用真实运行数据结合插入异常的方式对模型进行了验证,并与经典机器学习方法进行了对比。实验结果表明基于变分自编码器的模型能够有效检测到核电真实数据中的异常数据片段及离群点,检测精确率和召回率均高于90%,检测性能相对孤立森林和支持向量机等经典机器学习算法具有优势,具备一定的实用价值和研究意义。
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘Encrypted traffic identification pertains to the precise acquisition and categorization of data from traffic datasets containing imbalanced and obscured content.The extraction of encrypted traffic attributes and their subsequent identification presents a formidable challenge.The existing models have predominantly relied on direct extraction of encrypted traffic data from imbalanced datasets,with the dataset’s imbalance significantly affecting the model’s performance.In the present study,a new model,referred to as UD-VLD(Unbalanced Dataset-VAE-LSTM-DRN),was proposed to address above problem.The proposed model is an encrypted traffic identification model for handling unbalanced datasets.The encoder of the variational autoencoder(VAE)is combined with the decoder and Long-short term Memory(LSTM)in UD-VLD model to realize the data enhancement processing of the original unbalanced datasets.The enhanced data is processed by transforming the deep residual network(DRN)to address neural network gradient-related issues.Subsequently,the data is classified and recognized.The UD-VLD model integrates the related techniques of deep learning into the encrypted traffic recognition technique,thereby solving the processing problem for unbalanced datasets.The UD-VLD model was tested using the publicly available Tor dataset and VPN dataset.The UD-VLD model is evaluated against other comparative models in terms of accuracy,loss rate,precision,recall,F1-score,total time,and ROC curve.The results reveal that the UD-VLD model exhibits better performance in both binary and multi classification,being higher than other encrypted traffic recognition models that exist for unbalanced datasets.Furthermore,the evaluation performance indicates that the UD-VLD model effectivelymitigates the impact of unbalanced data on traffic classification.and can serve as a novel solution for encrypted traffic identification.
基金supported in part by National Natural Science Foundation of China(No.62176041)in part by Excellent Science and Technique Talent Foundation of Dalian(No.2022RY21).
文摘Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.
基金This work is supported by the 2022 National Key Research and Development Plan“Security Protection Technology for Critical Information Infrastructure of Distribution Network”(2022YFB3105100).
文摘First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism based on the time decay factor is proposed,taking into account the influence of historical interaction records.We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data.We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record.Then we propose an autoencoder-based trust clustering algorithm.We perform feature extraction based on autoencoders.Kullback leibler(KL)divergence is used to calculate the reconstruction error.When constructing a convolutional autoencoder,we introduce convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden layer of the autoencoder.The sparse penalty term in the loss function measures the difference through the KL divergence.Trust clustering is performed based on the density based spatial clustering of applications with noise(DBSCAN)clustering algorithm.During the clustering process,edge nodes have a variety of trustworthy attribute characteristics.We assign different attribute weights according to the relative importance of each attribute in the clustering process,and a larger weight means that the attribute occupies a greater weight in the calculation of distance.Finally,we introduced adaptive weights to calculate comprehensive trust evaluation.Simulation experiments prove that our trust evaluation mechanism has excellent reliability and accuracy.