[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoret...[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoretical basis for the management of elemental P and evaluation of elemental P loss potential. [Method] Totally six treat- ments were set to the soil samples. The Olsen-P, Bray-1 P and CaCl2-P contents of each soil sample were measured after indoor aerobic incubation. [Result] In the red soil of different P fertilizer application rates, the Olsen-P content decreased with the increasing of incubation time, while the content of Bray-1 P increased and CaCI2-P content was first increased then decreased. CaCl2-P content was linear correlated with Olsen-P content and Bray-1 P content. About 62% P fertilizers were transformed into Bray-1 P pool, and 14% into Olsen-P pool, but only 0.12% transformed into CaCl2-P pool. [Conclusion] There is little risk of P loss caused by P fertilizer application under aerobic condition, but it would increase with the increasing application dose, and the most serious time is the primeval period after P fertilizer application.展开更多
This study was conducted to investigate the effects of long-term located fertilization on soil phosphorus,the changes of soil available phosphorus(OlsenP),the evolution of soil total phosphorus(TP)and the ratio change...This study was conducted to investigate the effects of long-term located fertilization on soil phosphorus,the changes of soil available phosphorus(OlsenP),the evolution of soil total phosphorus(TP)and the ratio change of Olsen-P to TP(PAC)by 33-year fertilization experiments in winter wheat-summer maize rotation system in Shandong fluvo-aquic soil.Eight treatments were designed as no fertilization(CK),nitrogen fertilizer(N),nitrogen and phosphate fertilizer(NP),nitrogen and potassium fertilizer(NK),phosphate and potassium fertilizer(PK),nitrogen-phosphate-potassium fertilizer(NPK),reduced NPK fertilizer(N(15)PK),and increased NPK fertilizer(N_(25)PK).Meanwhile,eight organic fertilizer-added treatments were designed based on the application of inorganic fertilizer the same as the above ones.The results showed that TP,Olsen-P and PAC of treatments added with organic fertilizer were higher than those without organic fertilizer,and those of the treatments applied with phosphate fertilizer were higher than those of no phosphate fertilizer.With the increase of years,soil P pool decreased due to crop absorption,nutrient loss and morphological transformation and other causes under the treatments of without and only phosphate fertilizer,while remained stable under the treatments added with organic fertilizer.The PAC values were generally lower in fluvo-aquic soil,and it could be improved by the application of organic fertilizer.On the whole,the application of chemical phosphate fertilizer combined with organic fertilizer could improve the phosphorus content in soil and ensure the supply of phosphorus nutrition.This study would provide scientific basis for fertilization management and soil fertility in fluvo-aquic soil.展开更多
Phosphorus(P)availability,diffusion,and resupply processes can be altered by biochar addition in flooded rice rhizosphere,which controls the risk of P release to the environment.However,there are few in-situ investiga...Phosphorus(P)availability,diffusion,and resupply processes can be altered by biochar addition in flooded rice rhizosphere,which controls the risk of P release to the environment.However,there are few in-situ investigations of these rhizospheric processes and effects.To explore the effects of biochar addition on soil P availability,high-resolution dialysis(HR-Peeper),diffusive gradients in thin films(DGT),and zymography techniques were used to provide direct evidence in the rice rhizosphere at the sub-millimeter scale.Long-term(9-years)field and greenhouse pot experiments demonstrated that biochar addition notably decreased the soluble/labile P and Fe concentrations in rice rhizosphere(vs.no biochar addition;CK)based on the results of Peeper,DGT,and two-dimensional imaging of labile P fluxes.DGT-induced fluxes in the soil/sediment(DIFS)model and sediment P release risk index(SPRRI)further indicated that biochar addition decreased the diffusion and resupply capacity of P from soil solid to the solution,thereby decreasing P release risk to the environment.These processes were dominated by Fe redox cycling and the hydrolysis of Al(hydro)oxides that greatly increased the unavailable P(Ca-P and residual-P).Additionally,greenhouse pot experiments(without additional biochar)showed that the previous long-term biochar addition significantly increased soil phosphatase activity,due to an adaptive-enhancing response to P decrease in the rhizosphere zone.The in-situ study on the biogeochemical reactions of P in the rice rhizosphere may provide a new and direct perspective to better evaluate the biochar addition and potential benefits to agricultural soils.展开更多
We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a f...We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a fluvo-aquic soil in the North China Plain.Crop and soil data from a 2-year experiment with three P fertilizer application rates(0,75 and 300 kg P_(2)O_(5) ha^(–1)) were used to calibrate the model.Sensitivity analysis was carried out to investigate the influence of APSIM SoilP parameters on the simulated P availability in soil and maize growth.Crop and soil P parameters were then derived by matching or relating the simulation results to observed crop biomass,yield,P uptake and Olsen-P in soil.The re-parameterized model was further validated against 2 years of independent data at the same sites.The re-parameterized model enabled good simulation of the maize leaf area index (LAI),biomass,grain yield,P uptake,and grain P content in response to different levels of P additions against both the calibration and validation datasets.Our results showed that APSIM needs to be re-parameterized for simulation of maize LAI dynamics through modification of leaf size curve and a reduction in the rate of leaf senescence for modern staygreen maize cultivars in China.The P concentration limits (maximum and minimum P concentrations in organs)at different stages also need to be adjusted.Our results further showed a curvilinear relationship between the measured Olsen-P concentration and simulated labile P content,which could facilitate the initialization of APSIM P pools in the NCP with Olsen-P measurements in future studies.It remains difficult to parameterize the APSIM SoilP module due to the conceptual nature of the pools and simplified conceptualization of key P transformation processes.A fundamental understanding still needs to be developed for modelling and predicting the fate of applied P fertilizers in soils with contrasting physical and chemical characteristics.展开更多
A laboratory simulated freeze-thaw was conducted to determine the effects of freeze-thaw on soil nutrient availability in temperate semi-arid regions. Soil samples were collected from sandy soils (0-20 cm) of three ...A laboratory simulated freeze-thaw was conducted to determine the effects of freeze-thaw on soil nutrient availability in temperate semi-arid regions. Soil samples were collected from sandy soils (0-20 cm) of three typical ecosystems (grassland, Mongolian pine plantation and poplar plantation) in southeastern Keerqin Sandy Lands of China and subjected to freeze-thaw treatment (-12℃ for 10 days, then r 20℃ for 10 days) or incubated at constant temperature (20℃ for 20 days). Concentrations of the soil NO3^--N, NH4^+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P (MBP) were determined on three occasions: at the start of the incubation, immediate post-thawing and at the 10th day post-thawing. The results showed that soil net nitrification and N mineralization rates at three sites were negatively affected by freeze-thaw treatment, and decreased by 50%-85% as compared to the control, of which the greatest decline occurred in the soil collected from poplar plantation. In contrast, the concentration of soil NH4^+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P were insignificantly influenced by freeze-thaw except that LPi and NH4^+-N showed a slight increase immediate post-thawing. The effects of freeze-thaw on soil N transformation were related to soil biological processes and the relatively constant available P was ascribed to severe soil aridity.展开更多
In order to obtain high-efficiency organophosphorus solubilizing bacteria, 21 strains of organophosphate solubilizing bacteria were isolated from the rhizosphere soil of Camellia oleifera plants, and the transparent c...In order to obtain high-efficiency organophosphorus solubilizing bacteria, 21 strains of organophosphate solubilizing bacteria were isolated from the rhizosphere soil of Camellia oleifera plants, and the transparent circle method was used for rescreening. Only 4 strains of bacteria could form transparent circle on organophosphorus medium. The D/d value of 4 strains of bacteria was between 1.62 and 2.71, among which the D/d value of strain Y6 was the highest(2.71). The available phosphorus content of the fermentation supernatant was 8.50~14.79 mg/L, which was 7.88~14.17 mg/L higher than that of CK. The strain Y6 had the highest soluble phosphorus content of 14.79 mg/L in the fermentation supernatant, which was 14.17 mg/L higher than that of CK. According to the colony morphology, physiological and biochemical characteristics and 16S rDNA sequence analysis of strain Y6, it is preliminarily determined that strain Y6 is Pseudomonas. Strain Y6 is beneficial to improve the supply of phosphorus in rhizosphere soil of Camellia oleifera and promote the growth of Camellia oleifera. It has great potential in the development of bio-organic fertilizer.展开更多
To assess phosphorus(P)status of forest soil under naturally restored vegetation,P fractions in the 10-cm soil layer were quantified at different successional stages on the clear-cut site of mixed broadleaved and Kore...To assess phosphorus(P)status of forest soil under naturally restored vegetation,P fractions in the 10-cm soil layer were quantified at different successional stages on the clear-cut site of mixed broadleaved and Korean pine forest.Four communities of shrub,softwood broad-leaved forest,softwood and hardwood broad-leaved forest,and hardwood broad-leaved forest represented different successional stages.A soil sample from a primary broad-leaved and Korean pine stand was the control.A sequential P fractionation scheme extracted empirically defined pools of P and path analysis used to partition the direct and indirect contribution of soil P fractions to available P.The results show that available P increased significantly with long-term succession,while both sodium bicarbonate-extractable P(NaHCO_(3)-P)and sodium hydroxide-extractable P(NaOHP)fractions were reduced in early successional stages and increased in late stages.Compared to the primary forest,concentrations of P fractions in the four stages significantly decreased except for HCl-P,indicating that soil P supplements over the long-term did not return to primary forest levels.The results of related analysis also showed that NaHCO_(3)-P_(i)levels were significantly related to available phosphorus.According to the path analysis coefficient,NaHCO_(3)-P_(i)exhibited the highest effect on available P among eight P fractions;the indirect effects of other P fractions via NaHCO_(3)-P_(i)were larger than those with other P fractions.Overall,this study suggests that soil P bioavailability gradually improved during natural vegetation restoration on clear-cut sites mainly through the increase of NaHCO_(3)-P,where phosphorous is immediately available,and subsequently available phosphorus Na OH-P.展开更多
Investigating the dynamics and distribution of soil phosphorus(P) fractions can provide a basis for enhancing P utilization by crops. Four treatments from a 29-year long-term experiment in black soil with maize croppi...Investigating the dynamics and distribution of soil phosphorus(P) fractions can provide a basis for enhancing P utilization by crops. Four treatments from a 29-year long-term experiment in black soil with maize cropping were involved in this study: no fertilizer(CK), inorganic nitrogen and potassium(NK), inorganic nitrogen, phosphorus, and potassium(NPK), and NPK plus manure(NPKM). We analyzed soil P fractions in different soil layers using a modified Hedley sequential method. The long-term NPKM treatment significantly increased total P by 0.6–1.6 times in the different soil layers. The Olsen-P concentration far exceeded the environmental threshold for soil Olsen-P(50.6 mg kg) in the NPKM treatment in the 0–60 cm soil profile. Moreover, the concentrations and proportion of labile and partially labile inorganic P(Pi) fractions(i.e., Na HCO-extracted Pi, Na OH-extracted Pi, and dilute HClextracted Pi) to the sum of all P fractions(Pt) in the 0–60 cm soil profile were higher in the NPKM treatment than in the NPK treatment, indicating that manure could promote the transformation of non-labile into more labile forms of P in soil, possibly by manure reducing P fixation by soil particles. Soil organic matter, Mehlich-3 extractable iron(Fe), and organic-bound aluminum were increased by fertilization, and were the main factors influencing the differences in the P fractions in the 0–20 cm soil layer. Soil mineral components, i.e., free Fe oxide and Ca CO, were the main factors influencing the P fractions in the subsoil. The soil P transformation process varied with soil layer and fertilization. Application of manure fertilizer can increase the labile(Olsen) P concentrations of the various soil layers, and thus should reduce the mineral P fertilizer requirement for crop growth and reduce potential environmental damage.展开更多
Liming is often applied to alleviate soil acidification and increase crop yield on acidic soils,but its effect on soil phosphorus(P)availability is unclear,particularly in rice paddies.The objective of this study was ...Liming is often applied to alleviate soil acidification and increase crop yield on acidic soils,but its effect on soil phosphorus(P)availability is unclear,particularly in rice paddies.The objective of this study was to examine the effect of liming on rice production,yield and P uptake in a three-year field experiment in a double rice cropping system in subtropical China.We also conducted an incubation experiment to investigate the direct effect of liming on soil available P and phosphatase activities on paddy soils in the absence of plants.In the incubation experiment,liming reduced soil P availability(measured as Olsenextractable P)by 14–17%and inhibited the activity of soil acid phosphatase.Nonetheless,lime application increased grain yield,biomass,and P uptake in the field.Liming increased grain yield and P uptake more strongly for late rice(26 and 21%,respectively)than for early rice(15 and 8%,respectively).Liming reduced the concentration of soil available P in the field as well,reflecting the increase in rice P uptake and the direct negative effect of liming on soil P availability.Taken together,these results suggest that by stimulating rice growth,liming can overcome direct negative effects on soil P availability and increase plant P uptake in this acidic paddy soil where P is not the limiting factor.展开更多
Understanding P transformation in soils amended with poultry litter is important if water quality is to be protected.Our objectives were to determine the influence of method of litter application and temperature on P ...Understanding P transformation in soils amended with poultry litter is important if water quality is to be protected.Our objectives were to determine the influence of method of litter application and temperature on P availability. Poultry litter containing 20. 8g P/kg (dry weight) was either surface-applied or incorporated into Captina (fine-silty, siliceous, mesic Typic Fragiudult) and Nixa (loamy-skeletal,siliceous,Glossic Fragiudult) silt loams at rates of 0 or 10g/kg and incubated at 20℃ or 35℃ at a water potential of -40 kpa. Water soluble and available P (0.03 mol/L NH4F+0. 025mol/L HCl extraction) were determined during a 60d laboratory study. Results indicated that water soluble and available P levels in the soils initially decreased, then rapidly increased,and approached a steady state phase after approximately 20d. After 60d, water soluble P levels were significantly higher when litter was surface applied than when litter was incor porated. When the incubation was terminated, the net increase in available P in both soils was>100 mg P/kg.For efficient recycling of P and protection of water quality, application method and temperature should be considered when amending soils with poultry litter,展开更多
Phosphorus(P)is an essential element for agricultural production.Over-fertilization during decades caused an accumulation of P in soils leading to eutrophication in regions characterized by intensive agriculture.These...Phosphorus(P)is an essential element for agricultural production.Over-fertilization during decades caused an accumulation of P in soils leading to eutrophication in regions characterized by intensive agriculture.These environmental concerns together with the non-renewability of P resources have led to a more sustainable P use.Knowledge about the P need of crops is essential for a sustainable agriculture thereby minimizing P losses to the environment without lowering the yield substantially.Therefore,in this study,critical soil P values for yield reduction(PCrit)were determined based on fertilizer trials conducted between 1970 and 1988 and more recent fertilizer trials(2016-2017).At rotational level a common PCrit value of 109 mg P/kg dry soil(in an ammonium lactate and acetate extract)was determined.Crop specific PCrit values were also determined for seven crops(potato,winter wheat,barley,rye,maize,sugar beet and temporary grassland).These critical values ranged from 59 mg P/kg dry soil to 164 mg P/kg dry soil with winter wheat the least and maize the most sensitive towards P deficiency.The diversity in PCrit values among crops can mainly be explained by the root intensity but also rooting depth,exudation of organic acids and phosphatases may influence the PCrit value.The soil pH also influenced the P availability significantly.Soils with a favorable pH had a significantly higher availability(i.e.,lower PCrit value)for all crops compared to soils with a suboptimal pH.Critical soil P values might help to set up new or to evaluate current soil P in target zones used for P fertilizer recommendations.展开更多
In order to explore the effects of different silicon preparations on the soil fertility of paddy fields,a pot experiment with Dongnong 427 was carried on.Different types of silicon preparations,including Si-50-G,Si-60...In order to explore the effects of different silicon preparations on the soil fertility of paddy fields,a pot experiment with Dongnong 427 was carried on.Different types of silicon preparations,including Si-50-G,Si-60-G,Si-RH,Si-50 and Si-60,were sprayed on the leaves of rice at the tillering stage,and CK was set in the control stage.The contents of alkali nitrogen,available phosphorus,available potassium and available silicon in soil were determined in the tillering stage,booting stage and maturity stage of rice.The results showed that spraying different silicon preparations at the tillering stage could promote the activation and release of soil available nutrients in different degrees.展开更多
The decreasing of the plant available phosphorus of Romanian soils after 1990 is a major concern in relation with the lowered yields of the major crops. This fact is correlated with a rudimentary technology where the ...The decreasing of the plant available phosphorus of Romanian soils after 1990 is a major concern in relation with the lowered yields of the major crops. This fact is correlated with a rudimentary technology where the fertilization is a secondary issue. Thus, the fertilizer consumption, after 1990, has drastically decreased to 41.3 kg/ha NPK on arable land over 129.9 kg/ha in 1986 and from 86.4 kg/ha to 26.3 kg/ha on agricultural land. As a result, the phosphorus fertilizer quantities applied by small farmers are very small or inexistent. In order to determine the soil available phosphorus content in Romania, it was analyzed the evolution of soil phosphorus supplying degree on a cambic chernozem (one of the most fertile soils in Romania) from Agricultural Research and Development Station (ARDS) Caracal between 1986-1992 and 2000-2005. This analysis has shown the following issues: very well supplied soils by available phosphorus no more exist since 2006, the ones with a good supplying degree have decreased from 616 ha to 107 ha, which means from 24.8% to 4.3% yet the low supplied soils have increased from 526 ha to 1,129 ha (23.1% to 45.5%) and the very low supplied ones have increased from 198 ha to 776 ha (7.9% to 31.2%). As a consequence of low fertilizer quantities and the decreasing of the soil supplying degree by available phosphorus the average yield in this farm has decreased from 5,776 to 3,707 kg/ha.展开更多
Based on soil sample data in years, it is concluded that organic matter, total N, available P and rapidly available K increased compared with National Second Soil Survey. Furthermore, contents and changes of soil nutr...Based on soil sample data in years, it is concluded that organic matter, total N, available P and rapidly available K increased compared with National Second Soil Survey. Furthermore, contents and changes of soil nutrients were analyzed, and countermeasures for improving soil quality were proposed in order to protect and improve land comprehensive productivity and promote land resource sustainable use and agricultural sustainable development.展开更多
[Objective] The aim was to find an efficient method to measure available nitrogen, phosphorus and potassium content in vegetable seedling substrate. [ Method] The suitable dosage of leaching agent, ratio of the substr...[Objective] The aim was to find an efficient method to measure available nitrogen, phosphorus and potassium content in vegetable seedling substrate. [ Method] The suitable dosage of leaching agent, ratio of the substrate to water and leaching time for the detection of nutrient contents in the substrate by a soil nutrient measuring instrument were discussed firstly, and then the results of nutrient contents measured by the soil nutrient measuring instrument were compared with that by conventional approaches. [ Result] In compadson with the conventional methods, the av- erage content of available nitrogen measured by the soil nutrient measuring instrument was slightly higher, while the average content of available phosphorus measured by the instrument was lower; the average content of available potassium measured by the instrument was close to that by the conventional method. [ Conclusion] This study could provide us a new method to detect available nitrogen, phosphorus and potassium content in seedling substrate efficiently.展开更多
[Objectives]To study the activation effect of hydrochemical energy in regenerative agriculture on the nutrients of arsenic sandstone.[Methods]Starting from common environmental factors,moisture,it studied the mechanis...[Objectives]To study the activation effect of hydrochemical energy in regenerative agriculture on the nutrients of arsenic sandstone.[Methods]Starting from common environmental factors,moisture,it studied the mechanism of the release and activation of N,P,K nutrient elements in arsenic sandstone under different dry and wet environments.[Results]Water played a positive role in activating soil elements.Under the conditions of long-term dryness and alternating dry and wet conditions,the content of total nitrogen,available phosphorus and available potassium coexisted in the 210 d of culture and the element absorption and release,but the overall trend was increasing;under long-term flooding conditions,the content of total nitrogen and available potassium showed an overall increasing trend during the 210 d of culture,but the content of available phosphorus decreased.[Conclusions]Water plays a positive effect on activating soil elements.The research results are expected to provide a certain reference for the application research of water in regenerative agriculture.展开更多
Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC a...Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC and the percentage of soil Olsen-P to total P (PSOPTP) under six different 15-yr (1990-2004) long-term fertilizations at two cropping systems in northern China. These fertilization treatments were (1) unfertilized control (control); (2) chemical nitrogen (N); (3) N plus chemical P (NP); (4) NP plus chemical potassium (NPK); (5) NPK plus animal manure (NPKM) and (6) high NPKM (hNPKM). Compared with their initial values in 1989 at both sites, during the 1 lth to 15th fertilization years annual mean SOC contents were significantly increased by 39.4-47.0% and 58.9-93.9% at Gongzhuling, Jilin Province, and Urumqi, Xinjiang, China, under the two NPKM fertilizations, respectively, while no significant changes under the no-P or chemical P fertilization. During the 1 lth to 15th fertilization years, annual mean PSOPTP was respectively increased by 2.6-4.2 and 5.8-14.1 times over the initial values under the two chemical P fertilizations and the two NPKM fertilizations, but was unchanged in their initial levels under the two no-P fertilizations at both sites. Over the 15-yr long-term fertilization SOC significantly positively correlated with PSOPTP (r^2=0.55-0.79, P〈0.01). We concluded that the combination of chemical P plus manure is an effective way to promote SOC accumulation and the percentage of soil Olsen-P to total P at the two mono-cropping system sites in northern China.展开更多
The distribution and availability of phosphorus(P)fractions in restored cut slope soil aggregates,along altitude gradients,were analyzed.Samples were collected at 3009,3347,3654 and 3980 m of altitude.We examined soil...The distribution and availability of phosphorus(P)fractions in restored cut slope soil aggregates,along altitude gradients,were analyzed.Samples were collected at 3009,3347,3654 and 3980 m of altitude.We examined soil aggregates total phosphorus(TP),available phosphorus(AP)and phosphorus activation coefficient(PAC),and discovered that there was no significant difference in TP levels between all four altitudes samples(p>0.05).However,there was a significant difference in AP at 3009,3347 and 3980 m of altitude(p<0.05).At the altitudes of 3009,3347 and 3654 m,the AP accumulation in small size aggregates was more advantageous.Overall,PAC dropped steadily as soil aggregates sizes increased,as shown:PAC(3654 m)>PAC(3347 m)>PAC(3009 m)>PAC(3980 m).In all particle size soil aggregates,the distribution of the P fractions was as follows:total inorganic phosphorus(TPi)>total organic phosphorus(TPo)>residual phosphorus(R-P),at 3009,3347 and 3654 m,but a different registry was observed at 3980 m of altitude:TPo>TPi>R-P.Through correlation and multiple stepwise regression analysis,it was concluded that active NaHCO_(3)-Pi was the main AP source.It was also suggested that more attention should be given to the ratio of small particle size aggregates to increase soil AP storage.In order to improve the activation capacity and supply of soil P,along with promotion of the healthy development of soil ecosystem on slope land,it was suggest that inorganic P fertilizer and P activator could be added to soil at both low(3009 m)and high altitudes(3980 m).展开更多
Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form ...Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form of organic phosphorus, which is unavailable for root uptake unless hydrolyzed by secretory acid phosphatases. Thus, many microorganisms with the ability to produce phosphatase have been exploited. In this work, the activity of an extracellular acid phosphatase and yeast biomass from Candida mycoderma was measured under different culture conditions, such as pH, temperature, and carbon source. A maximal phosphatase activity of 8.47 × 10^5±0.11× 10^5 U/g was achieved by C. Mycoderma in 36 hr under the optimal conditions. The extracellular acid phosphatase has high activity over a wide pH tolerance range from 2.5 to S.0 (optimum pH 3.5). The effects of different phosphorus compounds on the acid phosphatase production were also studied. The presence of phytin, lecithin or calcium phosphate reduced the phosphatase activity and biomass yield significantly. In addition, the pH of the culture medium was reduced significantly by lecithin. The efficiency of the strain in releasing orthophosphate from organic phosphorus was studied in red soil (used in planting trees) and rice soil (originating as red soil). The available phosphorus content was increased by 230% after inoculating 20 days in rice soil and decreased by 50% after inoculating 10 days in red soil. This work indicates that the yeast strain C. mycoderma has potential application for enhancing phosphorus utilization in plants that grow in rice soil.展开更多
Knowledge of phosphorus(P)sorption dynamics across different soil types could direct agronomic and environmental management of P.The objective of this study was to predict P isotherm parameters for a national soil pop...Knowledge of phosphorus(P)sorption dynamics across different soil types could direct agronomic and environmental management of P.The objective of this study was to predict P isotherm parameters for a national soil population using data of routine laboratory tests.Langmuir and Freundlich sorption parameters were calculated from two different ranges(0-25 and 0-50 mg P L^(-1))using an archive of representative agricultural soil types from Ireland.Multiple linear regression(MLR)identified labile forms of aluminium(Al)and iron(Fe),organic matter(OM),cation exchange capacity(CEC),and clay as significant drivers.Langmuir and Freundlich sorption capacities,Freundlich affinity constant,and Langmuir buffer capacity were predicted reliably,with R^(2) of independent validation>0.9.Sorption isotherm parameters were predicted from P sorbed at a single concentration of 50 mg P L^(-1)(S_(50)).An MLR prediction of P sorption maximum in the 0-50 mg P L-1 range was achieved,to an accurate standard,using S_(50),OM,and Mehlich-3 Fe(R^(2) of independent calibration and validation being 0.91 and 0.95,respectively).Using Giles’four shapes of isotherms(C,L,H,and S),L non-strict-and C-shaped isotherm curves accounted for 64% and 27% of the soils,respectively.Hierarchical clustering identified a separation of isotherm curves influenced by two ranges of Mehlich-3 Al.Soils with a low range of Mehlich-3 Al(2.5-698 mg kg^(-1))had no incidence of rapid sorption(C shape).Single point indices,Al,or available soil data make the regression approach a feasible way of predicting Langmuir parameters that could be included with standard agronomic soil P testing.展开更多
基金Supported by the National Natural Science Foundation of China (41101285)the Research Fund for Young Teachers of Qiongzhou University,China (QYQN201124)~~
文摘[Objective] This study was to investigate the influence of phosphorus (P) fertilizer application on available P and easy-loss P content in red soil under aerobic incubating condition, with the aim to provide theoretical basis for the management of elemental P and evaluation of elemental P loss potential. [Method] Totally six treat- ments were set to the soil samples. The Olsen-P, Bray-1 P and CaCl2-P contents of each soil sample were measured after indoor aerobic incubation. [Result] In the red soil of different P fertilizer application rates, the Olsen-P content decreased with the increasing of incubation time, while the content of Bray-1 P increased and CaCI2-P content was first increased then decreased. CaCl2-P content was linear correlated with Olsen-P content and Bray-1 P content. About 62% P fertilizers were transformed into Bray-1 P pool, and 14% into Olsen-P pool, but only 0.12% transformed into CaCl2-P pool. [Conclusion] There is little risk of P loss caused by P fertilizer application under aerobic condition, but it would increase with the increasing application dose, and the most serious time is the primeval period after P fertilizer application.
基金Supported by Sub-project of National Key Research and Development Program of China in the 13thFive-Year Plan of China(2016YFD0300804-5)Special Fund for Agro-scientific Research in the Public Interest(201503106)Special Construction Project of"Overseas Taishan Scholar"
文摘This study was conducted to investigate the effects of long-term located fertilization on soil phosphorus,the changes of soil available phosphorus(OlsenP),the evolution of soil total phosphorus(TP)and the ratio change of Olsen-P to TP(PAC)by 33-year fertilization experiments in winter wheat-summer maize rotation system in Shandong fluvo-aquic soil.Eight treatments were designed as no fertilization(CK),nitrogen fertilizer(N),nitrogen and phosphate fertilizer(NP),nitrogen and potassium fertilizer(NK),phosphate and potassium fertilizer(PK),nitrogen-phosphate-potassium fertilizer(NPK),reduced NPK fertilizer(N(15)PK),and increased NPK fertilizer(N_(25)PK).Meanwhile,eight organic fertilizer-added treatments were designed based on the application of inorganic fertilizer the same as the above ones.The results showed that TP,Olsen-P and PAC of treatments added with organic fertilizer were higher than those without organic fertilizer,and those of the treatments applied with phosphate fertilizer were higher than those of no phosphate fertilizer.With the increase of years,soil P pool decreased due to crop absorption,nutrient loss and morphological transformation and other causes under the treatments of without and only phosphate fertilizer,while remained stable under the treatments added with organic fertilizer.The PAC values were generally lower in fluvo-aquic soil,and it could be improved by the application of organic fertilizer.On the whole,the application of chemical phosphate fertilizer combined with organic fertilizer could improve the phosphorus content in soil and ensure the supply of phosphorus nutrition.This study would provide scientific basis for fertilization management and soil fertility in fluvo-aquic soil.
基金the National Natural Science Foundation of China(No.42277026)the National Key Research and Development Program of China(2021YFD1700802)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28090300).
文摘Phosphorus(P)availability,diffusion,and resupply processes can be altered by biochar addition in flooded rice rhizosphere,which controls the risk of P release to the environment.However,there are few in-situ investigations of these rhizospheric processes and effects.To explore the effects of biochar addition on soil P availability,high-resolution dialysis(HR-Peeper),diffusive gradients in thin films(DGT),and zymography techniques were used to provide direct evidence in the rice rhizosphere at the sub-millimeter scale.Long-term(9-years)field and greenhouse pot experiments demonstrated that biochar addition notably decreased the soluble/labile P and Fe concentrations in rice rhizosphere(vs.no biochar addition;CK)based on the results of Peeper,DGT,and two-dimensional imaging of labile P fluxes.DGT-induced fluxes in the soil/sediment(DIFS)model and sediment P release risk index(SPRRI)further indicated that biochar addition decreased the diffusion and resupply capacity of P from soil solid to the solution,thereby decreasing P release risk to the environment.These processes were dominated by Fe redox cycling and the hydrolysis of Al(hydro)oxides that greatly increased the unavailable P(Ca-P and residual-P).Additionally,greenhouse pot experiments(without additional biochar)showed that the previous long-term biochar addition significantly increased soil phosphatase activity,due to an adaptive-enhancing response to P decrease in the rhizosphere zone.The in-situ study on the biogeochemical reactions of P in the rice rhizosphere may provide a new and direct perspective to better evaluate the biochar addition and potential benefits to agricultural soils.
基金funded by the National Natural Science Program of China(2022YFD1900300)the China Scholarship Council(CSC)through the CSC-CSIRO(Commonwealth Scientific and Industrial Research Organisation)Joint Ph D Program,the Zhumadian Major Scientific and Technological Innovation Project,China(170109564016)the Huanghuai University Scientific Research Foundation,China(502310020017)。
文摘We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a fluvo-aquic soil in the North China Plain.Crop and soil data from a 2-year experiment with three P fertilizer application rates(0,75 and 300 kg P_(2)O_(5) ha^(–1)) were used to calibrate the model.Sensitivity analysis was carried out to investigate the influence of APSIM SoilP parameters on the simulated P availability in soil and maize growth.Crop and soil P parameters were then derived by matching or relating the simulation results to observed crop biomass,yield,P uptake and Olsen-P in soil.The re-parameterized model was further validated against 2 years of independent data at the same sites.The re-parameterized model enabled good simulation of the maize leaf area index (LAI),biomass,grain yield,P uptake,and grain P content in response to different levels of P additions against both the calibration and validation datasets.Our results showed that APSIM needs to be re-parameterized for simulation of maize LAI dynamics through modification of leaf size curve and a reduction in the rate of leaf senescence for modern staygreen maize cultivars in China.The P concentration limits (maximum and minimum P concentrations in organs)at different stages also need to be adjusted.Our results further showed a curvilinear relationship between the measured Olsen-P concentration and simulated labile P content,which could facilitate the initialization of APSIM P pools in the NCP with Olsen-P measurements in future studies.It remains difficult to parameterize the APSIM SoilP module due to the conceptual nature of the pools and simplified conceptualization of key P transformation processes.A fundamental understanding still needs to be developed for modelling and predicting the fate of applied P fertilizers in soils with contrasting physical and chemical characteristics.
基金the grants from the National Natural Science Foundation of China (No. 30471377)the National Key Basic Research Program of China (No. 2007CB106803)the National Key Technologies R & D Program of China (No. 2006BAD26B0201-1)
文摘A laboratory simulated freeze-thaw was conducted to determine the effects of freeze-thaw on soil nutrient availability in temperate semi-arid regions. Soil samples were collected from sandy soils (0-20 cm) of three typical ecosystems (grassland, Mongolian pine plantation and poplar plantation) in southeastern Keerqin Sandy Lands of China and subjected to freeze-thaw treatment (-12℃ for 10 days, then r 20℃ for 10 days) or incubated at constant temperature (20℃ for 20 days). Concentrations of the soil NO3^--N, NH4^+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P (MBP) were determined on three occasions: at the start of the incubation, immediate post-thawing and at the 10th day post-thawing. The results showed that soil net nitrification and N mineralization rates at three sites were negatively affected by freeze-thaw treatment, and decreased by 50%-85% as compared to the control, of which the greatest decline occurred in the soil collected from poplar plantation. In contrast, the concentration of soil NH4^+-N, NaHCO3 extractable inorganic P (LPi) and microbial biomass P were insignificantly influenced by freeze-thaw except that LPi and NH4^+-N showed a slight increase immediate post-thawing. The effects of freeze-thaw on soil N transformation were related to soil biological processes and the relatively constant available P was ascribed to severe soil aridity.
基金湖南省科技厅重点研发计划(2017N K 2144)长沙市科技局重大专项(kq1804016)+1 种基金湖南农业科技创新联盟项目(2017LM0305)重金属污染耕地安全高效利用湖南省工程研究中心开放研究基金(TGOP-001)。
文摘In order to obtain high-efficiency organophosphorus solubilizing bacteria, 21 strains of organophosphate solubilizing bacteria were isolated from the rhizosphere soil of Camellia oleifera plants, and the transparent circle method was used for rescreening. Only 4 strains of bacteria could form transparent circle on organophosphorus medium. The D/d value of 4 strains of bacteria was between 1.62 and 2.71, among which the D/d value of strain Y6 was the highest(2.71). The available phosphorus content of the fermentation supernatant was 8.50~14.79 mg/L, which was 7.88~14.17 mg/L higher than that of CK. The strain Y6 had the highest soluble phosphorus content of 14.79 mg/L in the fermentation supernatant, which was 14.17 mg/L higher than that of CK. According to the colony morphology, physiological and biochemical characteristics and 16S rDNA sequence analysis of strain Y6, it is preliminarily determined that strain Y6 is Pseudomonas. Strain Y6 is beneficial to improve the supply of phosphorus in rhizosphere soil of Camellia oleifera and promote the growth of Camellia oleifera. It has great potential in the development of bio-organic fertilizer.
基金supported by the National Forestry Industry Public Welfare Projects(grant number 201404202)。
文摘To assess phosphorus(P)status of forest soil under naturally restored vegetation,P fractions in the 10-cm soil layer were quantified at different successional stages on the clear-cut site of mixed broadleaved and Korean pine forest.Four communities of shrub,softwood broad-leaved forest,softwood and hardwood broad-leaved forest,and hardwood broad-leaved forest represented different successional stages.A soil sample from a primary broad-leaved and Korean pine stand was the control.A sequential P fractionation scheme extracted empirically defined pools of P and path analysis used to partition the direct and indirect contribution of soil P fractions to available P.The results show that available P increased significantly with long-term succession,while both sodium bicarbonate-extractable P(NaHCO_(3)-P)and sodium hydroxide-extractable P(NaOHP)fractions were reduced in early successional stages and increased in late stages.Compared to the primary forest,concentrations of P fractions in the four stages significantly decreased except for HCl-P,indicating that soil P supplements over the long-term did not return to primary forest levels.The results of related analysis also showed that NaHCO_(3)-P_(i)levels were significantly related to available phosphorus.According to the path analysis coefficient,NaHCO_(3)-P_(i)exhibited the highest effect on available P among eight P fractions;the indirect effects of other P fractions via NaHCO_(3)-P_(i)were larger than those with other P fractions.Overall,this study suggests that soil P bioavailability gradually improved during natural vegetation restoration on clear-cut sites mainly through the increase of NaHCO_(3)-P,where phosphorous is immediately available,and subsequently available phosphorus Na OH-P.
基金supported by the National Natural Science Foundation of China(41977103 and 41471249)the Reform and Development Fund of Beijing Academy of Agriculture and Forestry Sciences,China(YZS201905)。
文摘Investigating the dynamics and distribution of soil phosphorus(P) fractions can provide a basis for enhancing P utilization by crops. Four treatments from a 29-year long-term experiment in black soil with maize cropping were involved in this study: no fertilizer(CK), inorganic nitrogen and potassium(NK), inorganic nitrogen, phosphorus, and potassium(NPK), and NPK plus manure(NPKM). We analyzed soil P fractions in different soil layers using a modified Hedley sequential method. The long-term NPKM treatment significantly increased total P by 0.6–1.6 times in the different soil layers. The Olsen-P concentration far exceeded the environmental threshold for soil Olsen-P(50.6 mg kg) in the NPKM treatment in the 0–60 cm soil profile. Moreover, the concentrations and proportion of labile and partially labile inorganic P(Pi) fractions(i.e., Na HCO-extracted Pi, Na OH-extracted Pi, and dilute HClextracted Pi) to the sum of all P fractions(Pt) in the 0–60 cm soil profile were higher in the NPKM treatment than in the NPK treatment, indicating that manure could promote the transformation of non-labile into more labile forms of P in soil, possibly by manure reducing P fixation by soil particles. Soil organic matter, Mehlich-3 extractable iron(Fe), and organic-bound aluminum were increased by fertilization, and were the main factors influencing the differences in the P fractions in the 0–20 cm soil layer. Soil mineral components, i.e., free Fe oxide and Ca CO, were the main factors influencing the P fractions in the subsoil. The soil P transformation process varied with soil layer and fertilization. Application of manure fertilizer can increase the labile(Olsen) P concentrations of the various soil layers, and thus should reduce the mineral P fertilizer requirement for crop growth and reduce potential environmental damage.
基金This work was supported by the National Key Research and Development Program of China(2018YFD0301102)the National Natural Science Foundation of China(31701383).
文摘Liming is often applied to alleviate soil acidification and increase crop yield on acidic soils,but its effect on soil phosphorus(P)availability is unclear,particularly in rice paddies.The objective of this study was to examine the effect of liming on rice production,yield and P uptake in a three-year field experiment in a double rice cropping system in subtropical China.We also conducted an incubation experiment to investigate the direct effect of liming on soil available P and phosphatase activities on paddy soils in the absence of plants.In the incubation experiment,liming reduced soil P availability(measured as Olsenextractable P)by 14–17%and inhibited the activity of soil acid phosphatase.Nonetheless,lime application increased grain yield,biomass,and P uptake in the field.Liming increased grain yield and P uptake more strongly for late rice(26 and 21%,respectively)than for early rice(15 and 8%,respectively).Liming reduced the concentration of soil available P in the field as well,reflecting the increase in rice P uptake and the direct negative effect of liming on soil P availability.Taken together,these results suggest that by stimulating rice growth,liming can overcome direct negative effects on soil P availability and increase plant P uptake in this acidic paddy soil where P is not the limiting factor.
文摘Understanding P transformation in soils amended with poultry litter is important if water quality is to be protected.Our objectives were to determine the influence of method of litter application and temperature on P availability. Poultry litter containing 20. 8g P/kg (dry weight) was either surface-applied or incorporated into Captina (fine-silty, siliceous, mesic Typic Fragiudult) and Nixa (loamy-skeletal,siliceous,Glossic Fragiudult) silt loams at rates of 0 or 10g/kg and incubated at 20℃ or 35℃ at a water potential of -40 kpa. Water soluble and available P (0.03 mol/L NH4F+0. 025mol/L HCl extraction) were determined during a 60d laboratory study. Results indicated that water soluble and available P levels in the soils initially decreased, then rapidly increased,and approached a steady state phase after approximately 20d. After 60d, water soluble P levels were significantly higher when litter was surface applied than when litter was incor porated. When the incubation was terminated, the net increase in available P in both soils was>100 mg P/kg.For efficient recycling of P and protection of water quality, application method and temperature should be considered when amending soils with poultry litter,
基金The field trials of 2016 and 2017 were financed by Flemish Land Agency(project APLM/2014/3).
文摘Phosphorus(P)is an essential element for agricultural production.Over-fertilization during decades caused an accumulation of P in soils leading to eutrophication in regions characterized by intensive agriculture.These environmental concerns together with the non-renewability of P resources have led to a more sustainable P use.Knowledge about the P need of crops is essential for a sustainable agriculture thereby minimizing P losses to the environment without lowering the yield substantially.Therefore,in this study,critical soil P values for yield reduction(PCrit)were determined based on fertilizer trials conducted between 1970 and 1988 and more recent fertilizer trials(2016-2017).At rotational level a common PCrit value of 109 mg P/kg dry soil(in an ammonium lactate and acetate extract)was determined.Crop specific PCrit values were also determined for seven crops(potato,winter wheat,barley,rye,maize,sugar beet and temporary grassland).These critical values ranged from 59 mg P/kg dry soil to 164 mg P/kg dry soil with winter wheat the least and maize the most sensitive towards P deficiency.The diversity in PCrit values among crops can mainly be explained by the root intensity but also rooting depth,exudation of organic acids and phosphatases may influence the PCrit value.The soil pH also influenced the P availability significantly.Soils with a favorable pH had a significantly higher availability(i.e.,lower PCrit value)for all crops compared to soils with a suboptimal pH.Critical soil P values might help to set up new or to evaluate current soil P in target zones used for P fertilizer recommendations.
基金Supported by the National Natural Science Foundation of China(31340032)。
文摘In order to explore the effects of different silicon preparations on the soil fertility of paddy fields,a pot experiment with Dongnong 427 was carried on.Different types of silicon preparations,including Si-50-G,Si-60-G,Si-RH,Si-50 and Si-60,were sprayed on the leaves of rice at the tillering stage,and CK was set in the control stage.The contents of alkali nitrogen,available phosphorus,available potassium and available silicon in soil were determined in the tillering stage,booting stage and maturity stage of rice.The results showed that spraying different silicon preparations at the tillering stage could promote the activation and release of soil available nutrients in different degrees.
文摘The decreasing of the plant available phosphorus of Romanian soils after 1990 is a major concern in relation with the lowered yields of the major crops. This fact is correlated with a rudimentary technology where the fertilization is a secondary issue. Thus, the fertilizer consumption, after 1990, has drastically decreased to 41.3 kg/ha NPK on arable land over 129.9 kg/ha in 1986 and from 86.4 kg/ha to 26.3 kg/ha on agricultural land. As a result, the phosphorus fertilizer quantities applied by small farmers are very small or inexistent. In order to determine the soil available phosphorus content in Romania, it was analyzed the evolution of soil phosphorus supplying degree on a cambic chernozem (one of the most fertile soils in Romania) from Agricultural Research and Development Station (ARDS) Caracal between 1986-1992 and 2000-2005. This analysis has shown the following issues: very well supplied soils by available phosphorus no more exist since 2006, the ones with a good supplying degree have decreased from 616 ha to 107 ha, which means from 24.8% to 4.3% yet the low supplied soils have increased from 526 ha to 1,129 ha (23.1% to 45.5%) and the very low supplied ones have increased from 198 ha to 776 ha (7.9% to 31.2%). As a consequence of low fertilizer quantities and the decreasing of the soil supplying degree by available phosphorus the average yield in this farm has decreased from 5,776 to 3,707 kg/ha.
文摘Based on soil sample data in years, it is concluded that organic matter, total N, available P and rapidly available K increased compared with National Second Soil Survey. Furthermore, contents and changes of soil nutrients were analyzed, and countermeasures for improving soil quality were proposed in order to protect and improve land comprehensive productivity and promote land resource sustainable use and agricultural sustainable development.
基金Supported by the Scientific Research Project of Public Welfare Industry(Agriculture)(201303014-01)Science and Technology Innovation Team of Anhui Academy of Agricultural Sciences(14C0314)the Dean’s Youth Innovation Fund from Anhui Academy of Agricultural Sciences(15B0331)
文摘[Objective] The aim was to find an efficient method to measure available nitrogen, phosphorus and potassium content in vegetable seedling substrate. [ Method] The suitable dosage of leaching agent, ratio of the substrate to water and leaching time for the detection of nutrient contents in the substrate by a soil nutrient measuring instrument were discussed firstly, and then the results of nutrient contents measured by the soil nutrient measuring instrument were compared with that by conventional approaches. [ Result] In compadson with the conventional methods, the av- erage content of available nitrogen measured by the soil nutrient measuring instrument was slightly higher, while the average content of available phosphorus measured by the instrument was lower; the average content of available potassium measured by the instrument was close to that by the conventional method. [ Conclusion] This study could provide us a new method to detect available nitrogen, phosphorus and potassium content in seedling substrate efficiently.
文摘[Objectives]To study the activation effect of hydrochemical energy in regenerative agriculture on the nutrients of arsenic sandstone.[Methods]Starting from common environmental factors,moisture,it studied the mechanism of the release and activation of N,P,K nutrient elements in arsenic sandstone under different dry and wet environments.[Results]Water played a positive role in activating soil elements.Under the conditions of long-term dryness and alternating dry and wet conditions,the content of total nitrogen,available phosphorus and available potassium coexisted in the 210 d of culture and the element absorption and release,but the overall trend was increasing;under long-term flooding conditions,the content of total nitrogen and available potassium showed an overall increasing trend during the 210 d of culture,but the content of available phosphorus decreased.[Conclusions]Water plays a positive effect on activating soil elements.The research results are expected to provide a certain reference for the application research of water in regenerative agriculture.
基金Financial supports are from the National Basic Research Program of China (2011CB100501)the National Natural Science Foundation of China (41171239, 41371247)the Project of Aid of Science and Technology in Xinjiang, China (201191140)
文摘Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC and the percentage of soil Olsen-P to total P (PSOPTP) under six different 15-yr (1990-2004) long-term fertilizations at two cropping systems in northern China. These fertilization treatments were (1) unfertilized control (control); (2) chemical nitrogen (N); (3) N plus chemical P (NP); (4) NP plus chemical potassium (NPK); (5) NPK plus animal manure (NPKM) and (6) high NPKM (hNPKM). Compared with their initial values in 1989 at both sites, during the 1 lth to 15th fertilization years annual mean SOC contents were significantly increased by 39.4-47.0% and 58.9-93.9% at Gongzhuling, Jilin Province, and Urumqi, Xinjiang, China, under the two NPKM fertilizations, respectively, while no significant changes under the no-P or chemical P fertilization. During the 1 lth to 15th fertilization years, annual mean PSOPTP was respectively increased by 2.6-4.2 and 5.8-14.1 times over the initial values under the two chemical P fertilizations and the two NPKM fertilizations, but was unchanged in their initial levels under the two no-P fertilizations at both sites. Over the 15-yr long-term fertilization SOC significantly positively correlated with PSOPTP (r^2=0.55-0.79, P〈0.01). We concluded that the combination of chemical P plus manure is an effective way to promote SOC accumulation and the percentage of soil Olsen-P to total P at the two mono-cropping system sites in northern China.
基金This work was supported by the National Natural Science Foundation of China(No.41971056)the National Key R&D Program of China(No.2017YFC0504903)。
文摘The distribution and availability of phosphorus(P)fractions in restored cut slope soil aggregates,along altitude gradients,were analyzed.Samples were collected at 3009,3347,3654 and 3980 m of altitude.We examined soil aggregates total phosphorus(TP),available phosphorus(AP)and phosphorus activation coefficient(PAC),and discovered that there was no significant difference in TP levels between all four altitudes samples(p>0.05).However,there was a significant difference in AP at 3009,3347 and 3980 m of altitude(p<0.05).At the altitudes of 3009,3347 and 3654 m,the AP accumulation in small size aggregates was more advantageous.Overall,PAC dropped steadily as soil aggregates sizes increased,as shown:PAC(3654 m)>PAC(3347 m)>PAC(3009 m)>PAC(3980 m).In all particle size soil aggregates,the distribution of the P fractions was as follows:total inorganic phosphorus(TPi)>total organic phosphorus(TPo)>residual phosphorus(R-P),at 3009,3347 and 3654 m,but a different registry was observed at 3980 m of altitude:TPo>TPi>R-P.Through correlation and multiple stepwise regression analysis,it was concluded that active NaHCO_(3)-Pi was the main AP source.It was also suggested that more attention should be given to the ratio of small particle size aggregates to increase soil AP storage.In order to improve the activation capacity and supply of soil P,along with promotion of the healthy development of soil ecosystem on slope land,it was suggest that inorganic P fertilizer and P activator could be added to soil at both low(3009 m)and high altitudes(3980 m).
基金supported by a grant from the Special Project for Forest Public Benefit (No. 200904055)Project for Advantage Life Science of Jiangshu Province and Open Project of Jiangsu Key Laboratory for Biodiversity and Biotechnology (No. 164070302115)
文摘Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form of organic phosphorus, which is unavailable for root uptake unless hydrolyzed by secretory acid phosphatases. Thus, many microorganisms with the ability to produce phosphatase have been exploited. In this work, the activity of an extracellular acid phosphatase and yeast biomass from Candida mycoderma was measured under different culture conditions, such as pH, temperature, and carbon source. A maximal phosphatase activity of 8.47 × 10^5±0.11× 10^5 U/g was achieved by C. Mycoderma in 36 hr under the optimal conditions. The extracellular acid phosphatase has high activity over a wide pH tolerance range from 2.5 to S.0 (optimum pH 3.5). The effects of different phosphorus compounds on the acid phosphatase production were also studied. The presence of phytin, lecithin or calcium phosphate reduced the phosphatase activity and biomass yield significantly. In addition, the pH of the culture medium was reduced significantly by lecithin. The efficiency of the strain in releasing orthophosphate from organic phosphorus was studied in red soil (used in planting trees) and rice soil (originating as red soil). The available phosphorus content was increased by 230% after inoculating 20 days in rice soil and decreased by 50% after inoculating 10 days in red soil. This work indicates that the yeast strain C. mycoderma has potential application for enhancing phosphorus utilization in plants that grow in rice soil.
基金funded by the Teagasc Walsh Fellowship Fund of Ireland(No.RMIS 6502)。
文摘Knowledge of phosphorus(P)sorption dynamics across different soil types could direct agronomic and environmental management of P.The objective of this study was to predict P isotherm parameters for a national soil population using data of routine laboratory tests.Langmuir and Freundlich sorption parameters were calculated from two different ranges(0-25 and 0-50 mg P L^(-1))using an archive of representative agricultural soil types from Ireland.Multiple linear regression(MLR)identified labile forms of aluminium(Al)and iron(Fe),organic matter(OM),cation exchange capacity(CEC),and clay as significant drivers.Langmuir and Freundlich sorption capacities,Freundlich affinity constant,and Langmuir buffer capacity were predicted reliably,with R^(2) of independent validation>0.9.Sorption isotherm parameters were predicted from P sorbed at a single concentration of 50 mg P L^(-1)(S_(50)).An MLR prediction of P sorption maximum in the 0-50 mg P L-1 range was achieved,to an accurate standard,using S_(50),OM,and Mehlich-3 Fe(R^(2) of independent calibration and validation being 0.91 and 0.95,respectively).Using Giles’four shapes of isotherms(C,L,H,and S),L non-strict-and C-shaped isotherm curves accounted for 64% and 27% of the soils,respectively.Hierarchical clustering identified a separation of isotherm curves influenced by two ranges of Mehlich-3 Al.Soils with a low range of Mehlich-3 Al(2.5-698 mg kg^(-1))had no incidence of rapid sorption(C shape).Single point indices,Al,or available soil data make the regression approach a feasible way of predicting Langmuir parameters that could be included with standard agronomic soil P testing.