The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. ...The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. Here the results are connected closely with the p-uniform smoothness and q-uniform convexity of Banach spaces which the martingales take values in.展开更多
In this article, it is proved that the maximal operator of one-dimensional dyadic derivative of dyadic integral I* and Cesàro mean operator σ* are bounded from the B-valued martingale Hardy spaces pΣα, Dα,...In this article, it is proved that the maximal operator of one-dimensional dyadic derivative of dyadic integral I* and Cesàro mean operator σ* are bounded from the B-valued martingale Hardy spaces pΣα, Dα, pLα, p H#α, pKr to Lα (0 α ∞), respectively. The facts show that it depends on the geometrical properties of the Banach space.展开更多
In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on...In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.展开更多
For Banach space-valued martingale, two new BMO spaces, namely BMO (X), resp-BMO (X), and two new sharp operators, namely, resp. generated by the condition-al p-mean-square resp. p-mean-square operator are introduce...For Banach space-valued martingale, two new BMO spaces, namely BMO (X), resp-BMO (X), and two new sharp operators, namely, resp. generated by the condition-al p-mean-square resp. p-mean-square operator are introduced, and then, the connections betweenBMO (X) and BMO;, BMO(X) and BMO and and are investigated. The resultsobtained here yield a new charactrization of the convexity and smoothness of Banach space.展开更多
The dual of B-valued martingale Hardy space Hr^s(p) (B) with small index 0 〈 r ≤ 1, which is associated with the conditional p-variation of B-valued martingale, is characterized. In order to obtain the results, ...The dual of B-valued martingale Hardy space Hr^s(p) (B) with small index 0 〈 r ≤ 1, which is associated with the conditional p-variation of B-valued martingale, is characterized. In order to obtain the results, a new type of Campanato spaces for B-valued martingales is introduced and the classical technique of atomic decompositions is improved. Some results obtained here are connected closely with the p-uniform smoothness and q-uniform convexity of the underlying Banach space.展开更多
Some atomic decomposition theorems for Banach-space-valued martingales are established. Using them, the embedding relationships between martingale spaces with small index are discussed. The results obtained here are c...Some atomic decomposition theorems for Banach-space-valued martingales are established. Using them, the embedding relationships between martingale spaces with small index are discussed. The results obtained here are connected closely with the p-uniform smoothness and q-uniform convexity of Banach space in which the martingales take values.展开更多
The interpolation spaces between Banach space valued martingale Hardy spaces, between Hardy and BMO spaces are identified respectively. Some results obtained here are connected closely with the convexity and smooth...The interpolation spaces between Banach space valued martingale Hardy spaces, between Hardy and BMO spaces are identified respectively. Some results obtained here are connected closely with the convexity and smoothness of the Banach space which the martingales take values in.展开更多
Let 1≤q≤∞,b be a slowly varying function and letΦ:[0,∞)■[0,∞)be an increasing convex function withΦ(0)=0 and■Φ(r)=∞.In this paper,we present a new class of Doob’s maximal inequality on Orlicz-Lorentz-Karam...Let 1≤q≤∞,b be a slowly varying function and letΦ:[0,∞)■[0,∞)be an increasing convex function withΦ(0)=0 and■Φ(r)=∞.In this paper,we present a new class of Doob’s maximal inequality on Orlicz-Lorentz-Karamata spaces LΦ,q,b.The results are new,even for the Lorentz-Karamata spaces withΦ(t)=tp,the Orlicz-Lorentz spaces with b≡1,and weak Orlicz-Karamata spaces with q=∞in the framework of LΦ,q,b-Moreover,we obtain some even stronger qualitative results that can remove the△2-condition of Liu,Hou and Wang(Sci China Math,2010,53(4):905-916).展开更多
In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is c...In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is characterized in terms of the Hàjek-Rèniy type inequality for Banach space valued martingales.Those results generalize the recent results of Gan Shixin [2].展开更多
In this article, the Banach space X and the martingales with values in it are considered. It is shown that the maximal operators of the one-dimensional dyadic derivative of the dyadic integral and Cesaro means are bou...In this article, the Banach space X and the martingales with values in it are considered. It is shown that the maximal operators of the one-dimensional dyadic derivative of the dyadic integral and Cesaro means are bounded from the dyadic Hardy- Lorentz space pH^-ra(X) to Lra(X) when X is isomorphic to a p-uniformly smooth space (1 〈p ≤ 2). And it is also bounded from Hra(X) to Lra(X) (0 〈 r 〈 ∞,0 〈 a≤oc) when X has Radon-Nikodym property. In addition, some weak-type inequalities are given.展开更多
From the point of view of the basic option model, enterprise investment decision making under uncertainty is studied based on the martingale method. The study shows that investment options and yields are increasing fu...From the point of view of the basic option model, enterprise investment decision making under uncertainty is studied based on the martingale method. The study shows that investment options and yields are increasing functions of time, and when the option equals the yield, the investment opportunity cost is the least, which is the appropriate time for the enterprise investment. Under the condition that the investment yield is an increasing function of time, the investment opportunity cost is also an increasing function of time after the time when the investment option equals the investment yield. So the investors should invest as soon as possible, otherwise they should stop investment forever in this project. It is impossible to acquire more investment yields by indefinitely delaying the investment. Meanwhile, the study also shows that the martingale method, used widely in financial investment theory, is a powerful tool for enterprise investment decision making.展开更多
Let 2≤p【∞ and let (f n) be a martingale. Using exponential bounds of the probabilities of the type P(|f n|】λ‖T(f n)‖ ∞) for some quasi-linear operators acting on martingales, we estimate upper bounds for t...Let 2≤p【∞ and let (f n) be a martingale. Using exponential bounds of the probabilities of the type P(|f n|】λ‖T(f n)‖ ∞) for some quasi-linear operators acting on martingales, we estimate upper bounds for the L p-norms of the maximal functions of martinglaes. Our result is the extension and improvements of the results obtained previously by HITCZENKO and ZENG .展开更多
In this article, the authors introduce some new Lorentz spaces for martingales, which are extensions of Hardy spaces of martingales. Then they discuss their basic properties, embedding relationships, and interpolation...In this article, the authors introduce some new Lorentz spaces for martingales, which are extensions of Hardy spaces of martingales. Then they discuss their basic properties, embedding relationships, and interpolation spaces between them, during which the use of rearrangement good-λ-inequality plays an important role.展开更多
In this article, some necessary and sufficient conditions are shown in order that the inequality of the form Ф1(λ)Pu(f^*〉λ)≤Ev (Ф2(C|f∞|)) holds with some constant C 〉 0 independent of martingale f...In this article, some necessary and sufficient conditions are shown in order that the inequality of the form Ф1(λ)Pu(f^*〉λ)≤Ev (Ф2(C|f∞|)) holds with some constant C 〉 0 independent of martingale f = (fn)n≥0 and λ 〉 0, where Фl and Ф2 are a pair of Young functions, f^*=sup n≥0|fn| adn f∞=lim n→∞ fn a.e.展开更多
A generalized Rosenthal's inequality for Banach-space-valued martingales is proved, which extends the corresponding results in the previous literatures and characterizes the p-uniform smoothness and q-uniform convexi...A generalized Rosenthal's inequality for Banach-space-valued martingales is proved, which extends the corresponding results in the previous literatures and characterizes the p-uniform smoothness and q-uniform convexity of the underlying Banach space. As an application of this inequality, the strong law of large numbers for Banach-space-valued martingales is also given.展开更多
基金Supported by the National Natural Science Foun-dation of China (10371093)
文摘The atomic decompositions of weak Hardy spaces of Banach-space-valued martingales are given. With the help of the atomic decompositions, some inequalities for B-valued martingales are established in the case 0〈r≤1. Here the results are connected closely with the p-uniform smoothness and q-uniform convexity of Banach spaces which the martingales take values in.
基金supported by the Nation Natural Science Foundation of China(10671147)Wuhan University of Science and Engineering under grant (093877)
文摘In this article, it is proved that the maximal operator of one-dimensional dyadic derivative of dyadic integral I* and Cesàro mean operator σ* are bounded from the B-valued martingale Hardy spaces pΣα, Dα, pLα, p H#α, pKr to Lα (0 α ∞), respectively. The facts show that it depends on the geometrical properties of the Banach space.
基金Supported by the National Natural Foundation of China(10671147)
文摘In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.
文摘For Banach space-valued martingale, two new BMO spaces, namely BMO (X), resp-BMO (X), and two new sharp operators, namely, resp. generated by the condition-al p-mean-square resp. p-mean-square operator are introduced, and then, the connections betweenBMO (X) and BMO;, BMO(X) and BMO and and are investigated. The resultsobtained here yield a new charactrization of the convexity and smoothness of Banach space.
文摘The dual of B-valued martingale Hardy space Hr^s(p) (B) with small index 0 〈 r ≤ 1, which is associated with the conditional p-variation of B-valued martingale, is characterized. In order to obtain the results, a new type of Campanato spaces for B-valued martingales is introduced and the classical technique of atomic decompositions is improved. Some results obtained here are connected closely with the p-uniform smoothness and q-uniform convexity of the underlying Banach space.
基金the National Natural Science Foundation of China (Grant No. 10071059) .
文摘Some atomic decomposition theorems for Banach-space-valued martingales are established. Using them, the embedding relationships between martingale spaces with small index are discussed. The results obtained here are connected closely with the p-uniform smoothness and q-uniform convexity of Banach space in which the martingales take values.
文摘The interpolation spaces between Banach space valued martingale Hardy spaces, between Hardy and BMO spaces are identified respectively. Some results obtained here are connected closely with the convexity and smoothness of the Banach space which the martingales take values in.
基金supported by the National Natural Science Foundation of China(11801001,12101223)the Scientific Research Fund of Hunan Provincial Education Department(20C0780)the Natural Science Foundation of Hunan Province(2022JJ40145,2022JJ40146)。
文摘Let 1≤q≤∞,b be a slowly varying function and letΦ:[0,∞)■[0,∞)be an increasing convex function withΦ(0)=0 and■Φ(r)=∞.In this paper,we present a new class of Doob’s maximal inequality on Orlicz-Lorentz-Karamata spaces LΦ,q,b.The results are new,even for the Lorentz-Karamata spaces withΦ(t)=tp,the Orlicz-Lorentz spaces with b≡1,and weak Orlicz-Karamata spaces with q=∞in the framework of LΦ,q,b-Moreover,we obtain some even stronger qualitative results that can remove the△2-condition of Liu,Hou and Wang(Sci China Math,2010,53(4):905-916).
基金Supported by the Youth Foundation of the Department of Education of Sichuan Province(07ZB042) Supported by Natural Science Foundation of the Department of Education of Sichuan Province(09ZC071)
文摘In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is characterized in terms of the Hàjek-Rèniy type inequality for Banach space valued martingales.Those results generalize the recent results of Gan Shixin [2].
基金supported by the National Natural Science Foundation of China (10371093)
文摘In this article, the Banach space X and the martingales with values in it are considered. It is shown that the maximal operators of the one-dimensional dyadic derivative of the dyadic integral and Cesaro means are bounded from the dyadic Hardy- Lorentz space pH^-ra(X) to Lra(X) when X is isomorphic to a p-uniformly smooth space (1 〈p ≤ 2). And it is also bounded from Hra(X) to Lra(X) (0 〈 r 〈 ∞,0 〈 a≤oc) when X has Radon-Nikodym property. In addition, some weak-type inequalities are given.
文摘From the point of view of the basic option model, enterprise investment decision making under uncertainty is studied based on the martingale method. The study shows that investment options and yields are increasing functions of time, and when the option equals the yield, the investment opportunity cost is the least, which is the appropriate time for the enterprise investment. Under the condition that the investment yield is an increasing function of time, the investment opportunity cost is also an increasing function of time after the time when the investment option equals the investment yield. So the investors should invest as soon as possible, otherwise they should stop investment forever in this project. It is impossible to acquire more investment yields by indefinitely delaying the investment. Meanwhile, the study also shows that the martingale method, used widely in financial investment theory, is a powerful tool for enterprise investment decision making.
文摘Let 2≤p【∞ and let (f n) be a martingale. Using exponential bounds of the probabilities of the type P(|f n|】λ‖T(f n)‖ ∞) for some quasi-linear operators acting on martingales, we estimate upper bounds for the L p-norms of the maximal functions of martinglaes. Our result is the extension and improvements of the results obtained previously by HITCZENKO and ZENG .
文摘In this article, the authors introduce some new Lorentz spaces for martingales, which are extensions of Hardy spaces of martingales. Then they discuss their basic properties, embedding relationships, and interpolation spaces between them, during which the use of rearrangement good-λ-inequality plays an important role.
文摘In this article, some necessary and sufficient conditions are shown in order that the inequality of the form Ф1(λ)Pu(f^*〉λ)≤Ev (Ф2(C|f∞|)) holds with some constant C 〉 0 independent of martingale f = (fn)n≥0 and λ 〉 0, where Фl and Ф2 are a pair of Young functions, f^*=sup n≥0|fn| adn f∞=lim n→∞ fn a.e.
基金Supported by the Scientific Research Foundation of Hubei Province (D200613001)the National Natural Science Foundation of China (10371093)
文摘A generalized Rosenthal's inequality for Banach-space-valued martingales is proved, which extends the corresponding results in the previous literatures and characterizes the p-uniform smoothness and q-uniform convexity of the underlying Banach space. As an application of this inequality, the strong law of large numbers for Banach-space-valued martingales is also given.