期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
DAMAGE DETECTION IN STRUCTURES USING MODIFIED BACK-PROPAGATION NEURAL NETWORKS 被引量:6
1
作者 Sima Yuzhou 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期358-370,共13页
A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of... A nonparametric structural damage detection methodology based on neuralnetworks method is presented for health monitoring of structure-unknown systems. In this approachappropriate neural networks are trained by use of the modal test data from a 'healthy' structure.The trained networks which are subsequently fed with vibration measurements from the same structurein different stages have the capability of recognizing the location and the content of structuraldamage and thereby can monitor the health of the structure. A modified back-propagation neuralnetwork is proposed to solve the two practical problems encountered by the traditionalback-propagation method, i.e., slow learning progress and convergence to a false local minimum.Various training algorithms, types of the input layer and numbers of the nodes in the input layerare considered. Numerical example results from a 5-degree-of-freedom spring-mass structure andanalyses on the experimental data of an actual 5-storey-steel-frame demonstrate thatneural-networks-based method is a robust procedure and a practical tool for the detection ofstructural damage, and that the modified back-propagation algorithm could improve the computationalefficiency as well as the accuracy of detection. 展开更多
关键词 neural network modified back-propagation damage detection modal testdata health monitoring
下载PDF
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
2
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
下载PDF
Nonlinear inverse modeling of sensor based on back-propagation fuzzy logical system 被引量:1
3
作者 李军 刘君华 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期14-17,共4页
Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient n... Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output. 展开更多
关键词 SENSOR inverse modeling fuzzy logical system back-propagation algorithm
下载PDF
Predict typhoon-induced storm surge deviation in a principal component back-propagation neural network model 被引量:1
4
作者 过仲阳 戴晓燕 +1 位作者 栗小东 叶属峰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期219-226,共8页
To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We appl... To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge. 展开更多
关键词 TYPHOON storm surges forecasts principal component back-propagation neural networks(PCBPNN) Changjiang (Yangtze) River estuary
下载PDF
Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks 被引量:1
5
作者 秦钟 苏高利 +2 位作者 于强 胡秉民 李俊 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期418-426,共9页
In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes... In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant. 展开更多
关键词 Carbon dioxide Water vapor and heat fluxes Three-layer back-propagation neural networks
下载PDF
A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis 被引量:1
6
作者 Guolu Gao Yang Li +2 位作者 Jiaqi Li Xueyun Zhou Ziqin Zhou 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期13-18,共6页
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network... Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features. 展开更多
关键词 RAINSTORM Short-term prediction method back-propagation neural network Hybrid forecast model
下载PDF
Temperature prediction model for a high-speed motorized spindle based on back-propagation neural network optimized by adaptive particle swarm optimization 被引量:1
7
作者 Lei Chunli Zhao Mingqi +2 位作者 Liu Kai Song Ruizhe Zhang Huqiang 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期235-241,共7页
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos... To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools. 展开更多
关键词 temperature prediction high-speed motorized spindle particle swarm optimization algorithm back-propagation neural network ROBUSTNESS
下载PDF
Preparation of ZrB_2-SiC Powders via Carbothermal Reduction of Zircon and Prediction of Product Composition by Back-Propagation Artificial Neural Network 被引量:1
8
作者 LIU Jianghao DU Shuang +2 位作者 LI Faliang ZHANG Haijun ZHANG Shaoweia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1062-1069,共8页
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ... Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy. 展开更多
关键词 ZrB2-SiC powders carbothermal reduction back-propagation artificial neural networks (BP-ANNs) composition prediction
下载PDF
Sound Quality Prediction of Vehicle Interior Noise under Multiple Working Conditions Using Back-Propagation Neural Network Model 被引量:1
9
作者 Zutong Duan Yansong Wang Yanfeng Xing 《Journal of Transportation Technologies》 2015年第2期134-139,共6页
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve... This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions. 展开更多
关键词 Multiple Working Conditions NEURAL Network back-propagation SOUND Quality PREDICTION ANNOYANCE
下载PDF
A back-propagation neural-network-based displacement back analysis for the identification of the geomechanical parameters of the Yonglang landslide in China 被引量:1
10
作者 YU Fang-wei PENG Xiong-zhi SU Li-jun 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1739-1750,共12页
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located... Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides. 展开更多
关键词 back-propagation neural network Displacement back analysis Geomechanical parameters Landslide Numerical analysis Uniform design Xigeda formation
下载PDF
Simulation and optimization for synthetic technology of 2-chloro-4,6-dinitroresorcinol based on back-propagation neural network
11
作者 史瑞欣 Huang Yudong 《High Technology Letters》 EI CAS 2007年第3期283-286,共4页
Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental d... Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the reaction temperature is 80℃, the molar ratio of NaOH to 4,6-dinitro-1,2,3-trichlorobenzene is 5.5:1, the molar ratio of methanol to 4,6-dinitro-1,2,3- trichlorobenzene is 11:1, and the molar ratio of water to 4,6-dinitro-1,2,3-trichlorobenzene is 70:1. Under the optimal conditions, three groups of experiments were performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is -1.07%. 展开更多
关键词 2-chlom-4 6-dinitroresorcinol synthetic technology OPTIMIZATION back-propagation neural network model constructing
下载PDF
CONVERGENCE OF GRADIENT METHOD WITH MOMENTUM FOR BACK-PROPAGATION NEURAL NETWORKS 被引量:5
12
作者 Wei Wu Naimin Zhang +2 位作者 Zhengxue Li Long Li Yan Liu 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第4期613-623,共11页
In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. C... In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. Corresponding convergence results are proved. 展开更多
关键词 back-propagation (BP) neural networks Gradient method MOMENTUM Convergence.
原文传递
Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network 被引量:3
13
作者 ZHANG Jun ZHAO Shenwei +1 位作者 WANG Yuanqiang ZHU Xinshan 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期209-219,共11页
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ... The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data. 展开更多
关键词 urban traffic short-term traffic flow forecasting social emotion optimization algorithm(SEOA) back-propagation neural network(BPNN) Metropolis rule
原文传递
Negative effects of sufficiently small initial weights on back-propagation neural networks 被引量:2
14
作者 Yan LIU Jie YANG +1 位作者 Long LI Wei WU 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第8期585-592,共8页
In the training of feedforward neural networks, it is usually suggested that the initial weights should be small in magnitude in order to prevent premature saturation. The aim of this paper is to point out the other s... In the training of feedforward neural networks, it is usually suggested that the initial weights should be small in magnitude in order to prevent premature saturation. The aim of this paper is to point out the other side of the story: In some cases, the gradient of the error functions is zero not only for infinitely large weights but also for zero weights. Slow convergence in the beginning of the training procedure is often the result of sufficiently small initial weights. Therefore, we suggest that, in these cases, the initial values of the weights should be neither too large, nor too small. For instance, a typical range of choices of the initial weights might be something like (-0.4,-0.1) U (0.1,0.4), rather than (-0.1,0.1) as suggested by the usual strategy. Our theory that medium size weights should be used has also been extended to a few commonly used transfer functions and error functions. Numerical experiments are carried out to support our theoretical findings. 展开更多
关键词 Neural networks back-propagation Gradient learning method CONVERGENCE
原文传递
Room thermal load prediction based on analytic hierarchy process and back-propagation neural networks 被引量:2
15
作者 Xin Tan Zhenjing Zhu +1 位作者 Guoxin Sun Linfeng Wu 《Building Simulation》 SCIE EI CSCD 2022年第11期1989-2002,共14页
Accurate prediction of the heat load is the basic premise of intelligent regulation of the heating system,which helps to realize effective management of heating,ventilation,air conditioning system.For the problem that... Accurate prediction of the heat load is the basic premise of intelligent regulation of the heating system,which helps to realize effective management of heating,ventilation,air conditioning system.For the problem that the weight of each influencing factor is not taken into account in the current heat load prediction and is not highly targeted,this article deeply explores the influence of different factors on the room heat load,and we propose a method to calculate room heat load prediction based on the combination of analytic hierarchy process(AHP)and back-propagation(BP)neural network.Firstly,eight environmental factors affecting the heat load are selected as prediction inputs through parametric analysis,and then the weights of each input are determined by AHP and normalize the prediction data by combining expert opinions,and finally do one-to-one training the quantified score and the room heat load to predict the future heat load by BP neural network.The simulation tests show that the mean absolute relative error(MARE)of the proposed prediction method is 5.40%.This article also verifies the influence of different expert opinions on the stability of the model.The results show that the proposed method can guarantee higher prediction accuracy and stability. 展开更多
关键词 heating system heat load prediction analytic hierarchy process back-propagation neural network
原文传递
Short-term wind power prediction using an improved grey wolf optimization algorithm with back-propagation neural network 被引量:1
16
作者 Liming Wei Shuo Xv Bin Li 《Clean Energy》 EI 2022年第2期288-296,共9页
A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a trad... A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a traditional back-propagation(BP)neural network algorithm,the improved grey wolf optimization(IGWO)algorithm has been adopted to optimize its parameters.The performance of the proposed method has been evaluated by experiments.First,the features of the wind farm are described to show the fundamental information of the experiments.A single turbine with rated power of 1500 kW and power generation coefficient of 2.74 in the wind farm was introduced to show the technical details of the turbines.Original wind power data of the whole farm were preprocessed by using the quartile method to remove the abnormal data points.Then,the retained wind power data were predicted and analysed by using the proposed IGWO-BP algorithm.Analysis of the results proves the practicability and efficiency of the prediction model.Results show that the average accuracy of prediction is~11%greater than the traditional BP method.In this way,the proposed wind power prediction method can be adopted to improve the accuracy of prediction and to ensure the effective utilization of wind energy. 展开更多
关键词 wind power prediction back-propagation neural network improved grey wolf optimization IGWO
原文传递
Modeling effects of alloying elements and heat treatment parameters on mechanical properties of hot die steel with back-propagation artificial neural network 被引量:1
17
作者 Yong Liu Jing-chuan Zhu Yong Cao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第12期1254-1260,共7页
Materials data deep-excavation is very important in materials genome exploration.In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements,heat treatme... Materials data deep-excavation is very important in materials genome exploration.In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements,heat treatment parameters and materials properties,a 11×12×12×4 back-propagation(BP)artificial neural network(ANN)was set up.Alloying element contents,quenching and tempering temperatures were selected as input;hardness,tensile and yield strength were set as output parameters.The ANN shows a high fitting precision.The effects of alloying elements and heat treatment parameters on the properties of hot die steel were studied using this model.The results indicate that high temperature hardness increases with increasing alloying element content of C,Si,Mo,W,Ni,V and Cr to a maximum value and decreases with further increase in alloying element content.The ANN also predicts that the high temperature hardness will decrease with increasing quenching temperature,and possess an optimal value with increasing tempering temperature.This model provides a new tool for novel hot die steel design. 展开更多
关键词 back-propagation artificial neural network Hot die steel Alloying element Heat treatment
原文传递
Back-Propagation Artificial Neural Networks for Water Supply Pipeline Model
18
作者 朱东海 张土乔 毛根海 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第5期527-531,共5页
Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was iden... Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was identified using back-propagation (BP) artificial neural networks (ANN). The study is based on an indoor urban water supply model experiment. The key to appling BP ANN is to optimize the ANN's topological structure and learning parameters. This paper presents the optimizing method for a 3-layer BP neural network's topological structure and its learning parameters-learning ratio and the momentum factor. The indoor water supply pipeline model experimental results show that BP ANNs can be used to locate the burst point in urban water supply systems. The topological structure and learning parameters were optimized using the experimental results. 展开更多
关键词 back-propagation artificial neural network (BP ANN) learning ratio momentum factor water supply pipelines model experiment
原文传递
Sequential Back-Propagation
19
作者 王晖 刘大有 王亚飞 《Journal of Computer Science & Technology》 SCIE EI CSCD 1994年第3期252-260,共9页
In this paper we consider the problem of sequential processing and present a sequen-tial model based on the back-propagation algorithm. This model is intended to deal with intrinsically sequential problems, such as wo... In this paper we consider the problem of sequential processing and present a sequen-tial model based on the back-propagation algorithm. This model is intended to deal with intrinsically sequential problems, such as word recognition, speech recognition,natural language understanding. This model can be used to train a network to learn the sequence of input patterns, in a fixed order or a random order. Besides, this mod-el is open- and partial-associative, characterized as 'recognizing while accumulating',which, as we argue, is mental cognition process oriented. 展开更多
关键词 Sequential back-propagation open-association partial association word recognition mental process of cognition
原文传递
Predicting siRNA activity based on back-propagation neural network
20
作者 Jianlong LI Zhengzhi WANG Xiaomin WANG 《Frontiers in Biology》 CSCD 2008年第2期154-159,共6页
RNA interference(RNAi)is a phenomenon of gene silence induced by a double-stranded RNA(dsRNA)homologous to a target gene.RNAi can be used to identify the function of genes or to knock down the targeted genes.In RNAi t... RNA interference(RNAi)is a phenomenon of gene silence induced by a double-stranded RNA(dsRNA)homologous to a target gene.RNAi can be used to identify the function of genes or to knock down the targeted genes.In RNAi technology,19 bp double-stranded short interfering RNAs(siRNA)with characteristic 39 overhangs are usually used.The effects of siRNAs are quite varied due to the different choices in the sites of target mRNA.Moreover,there are many factors influencing siRNA activity and these factors are usually nonlinear.To find the motif features and the effect on siRNA activity,we carried out a feature extraction on some published experimental data and used these features to train a backpropagation neural network(BP NN).Then,we used the trained BP NN to predict siRNA activity. 展开更多
关键词 RNA interference(RNAi) double-stranded RNA(dsRNA) back-propagation neural network(BP NN)
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部