期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
Effect of melt-to-solid volume ratio and preheating temperature on Mg/Al bimetals interface by centrifugal casting 被引量:2
1
作者 Morteza Sarvari Mehdi Divandari +1 位作者 Hassan Saghafan Sina Ghaemi Khiavi 《China Foundry》 SCIE CAS CSCD 2023年第3期234-240,共7页
Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al... Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface. 展开更多
关键词 compound casting centrifugal casting Mg/Al bimetal preheating temperature melt-to-solid volume ratio INTERFACE
下载PDF
A novel method to improve interfacial bonding of compound squeeze cast Al/Al-Cu macrocomposite bimetals:Simulation and experimental studies 被引量:6
2
作者 Mohammad Hossein BABAEE Ali MALEKI Behzad NIROUMAND 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1184-1199,共16页
A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of th... A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert. 展开更多
关键词 Al/Al-4.5wt.%Cu macrocomposite bimetal interfacial bonding surface machining pattern microstructure mechanical properties simulation
下载PDF
Dry-gel synthesis of hierarchical Ni-La@S-1 catalysts with stabilized Ni-La bimetals nanoparticles for dry reforming of methane
3
作者 Jin Lv Youhe Wang +11 位作者 Junjie Liu Zhichao Zhang Yu Ma Ziyi Zhou Yuqing Ouyang Jie Zhong Xiang Rao Hongman Sun Xiaoyun Xiong Qingxun Hu Guofeng Zhao Zifeng Yan 《Nano Research》 SCIE EI CSCD 2024年第11期10216-10226,共11页
Dry reforming of methane (DRM) can simultaneously convert two critical greenhouse gases CH4 and CO_(2) into high-value syngas. However, the catalyst deactivation caused by sintering and carbon deposition of Ni-based c... Dry reforming of methane (DRM) can simultaneously convert two critical greenhouse gases CH4 and CO_(2) into high-value syngas. However, the catalyst deactivation caused by sintering and carbon deposition of Ni-based catalysts at high temperature is a significant problem to be solved for DRM industrialization. Herein, we represent a hierarchical Ni-La@S-1 catalyst for DRM reaction, showing high anti-sintering/coke capacity to improve DRM stability. The La and Ni nitrates were first grinded into the pores of SBA-15 followed by N2-treatment;the sample was then recrystallized by a unique template assisted-uniformly dispersed strategy to obtain the hierarchical Ni-La@S-1 catalyst. This strategy achieves uniform encapsulation of stabilized Ni-La bimetallic nanoparticles in S-1 with high loading, exhibiting high DRM activity and stability at 700 °C and 36,000 mL·g^(−1)·h^(−1). Moreover, La addition promoted CO_(2) to form bidentate carbonate, a critical intermediate in DRM, which greatly ameliorated carbon deposition in Ni catalysts. This work offers promising clue for tailoring the industrial DRM catalysts. 展开更多
关键词 Ni-La bimetals encapsulation dry gel recrystallization dry reforming of methane stability additive metal
原文传递
Efficient reduction of hexavalent chromium with microscale Fe/Cu bimetals:Efficiency and the role of Cu
4
作者 Yue Yuan Zhikui Zhou +4 位作者 Xinyi Zhang Xin Li Yulu Liu Shengtao Yang Bo Lai 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期225-229,共5页
Microscale zero valent iron(mFe^(0))is one of the most potential water pollution remediation materials,but the effective utilization ability of electrons released by mFe^(0)in the reduction of hexavalent chromium(Cr(V... Microscale zero valent iron(mFe^(0))is one of the most potential water pollution remediation materials,but the effective utilization ability of electrons released by mFe^(0)in the reduction of hexavalent chromium(Cr(VI))is not satisfactory.Here,we find the microscale iron-copper(m Fe/Cu)bimetals coated with copper on the surface of mFe^(0)can significantly improve the effective utilization of electrons released by mFe^(0).Electrochemical analysis displays that copper plating on the surface of m Fe/Cu can promote the release the electrons from mFe^(0)and reduce the impedance of mFe^(0).Spin-polarized density functional theory(DFT)calculation reveals that Cu on the surface of m Fe/Cu bimetals promotes the release of electrons from mFe^(0)and reduces the adsorption energy of Fe to Cr.As the electron transporter,moreover,Cu can always attract Cr to the hollow position near itself of the Fe surface,which could promote the effective utilization of electrons released by Fe.Effective utilization ability of electrons in m Fe/Cu system is 12.5 times higher than that in mFe^(0)system.Our findings provide another basis for the efficient reduction of Cr(VI)by m Fe/Cu bimetals,which could promote the application and popularization of m Fe/Cu bimetals. 展开更多
关键词 Zero valent iron mFe/Cu bimetals Hexavalent chromium Mechanism Elecreons
原文传递
Combined effects of ultrasonic vibration and FeCoNiCrCu coating on interfacial microstructure and mechanical properties of Al/Mg bimetal by compound casting
5
作者 Yuan-cai Xu Wen-ming Jiang +3 位作者 Qing-qing Li Ling-hui Yu Xiao-peng Yu Zi-tian Fan 《China Foundry》 SCIE EI CAS CSCD 2024年第5期588-598,共11页
In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite trea... In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%. 展开更多
关键词 ultrasonic vibration FeCoNiCrCu HEA coating Al/Mg bimetal interfacial microstructure shear strength compound casting
下载PDF
Graphene-loaded nickel−vanadium bimetal oxides as hydrogen pumps to boost solid-state hydrogen storage kinetic performance of magnesium hydride
6
作者 Dong-qiang GAO Fu-ying WU +4 位作者 Zhi ZHANG Zi-chuan LU Ren ZHOU Hu ZHAO Liu-ting ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2645-2657,共13页
To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were pre... To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles. 展开更多
关键词 hydrogen storage properties MgH_(2) graphene-loaded Ni−V bimetal oxides catalytic mechanism
下载PDF
New insight in the O_(2) activation by nano Fe/Cu bimetals:The synergistic role of Cu(0) and Fe(Ⅱ)
7
作者 Wei Xiang Mingjie Huang +4 位作者 Yifan Wang Xiaohui Wu Fugang Zhang Dan Li Tao Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第10期2831-2834,共4页
This study demonstrated that as-synthesized nano Fe/Cu bimetals could achieve significant enhancement in the degradation of diclofenac(DCF),as compared to much slow removal of DCF by Cu(Ⅱ) or zero valent iron nanopar... This study demonstrated that as-synthesized nano Fe/Cu bimetals could achieve significant enhancement in the degradation of diclofenac(DCF),as compared to much slow removal of DCF by Cu(Ⅱ) or zero valent iron nanoparticles(nZVI),respectively.Further observations on the evolution of O_(2) activation process by nano Fe/Cu bimetals was conducted stretching to the preparation phase(started by nZVI/Cu2+).Interesting breakpoints we re observed with obvious sudden increase in the DCF degradation efficiency and decrease in solution pH,as the original nZVI just consumed up to Fe(Ⅱ) and Cu(II) appeared again.It suggested that the four-electrons reaction of O_(2) and Cu-deposited nZVI would occur to generate water prior to the breakpoints,while Cu(0) and Fe(Ⅱ) would play most important role in activation of O_(2) afterwards.Through the electron spin resonance(ESR) analysis and quenching experiments.·OH was identified as the responsible reactive species.Further time-dependent quantifications in the cases of Cu(0)/Fe(Ⅱ) systems we re carried out.It was found that the ’OH accumulation was positively and linearly correlated with nCu dose,Fe(Ⅱ) consumption,and Fe(II) dose,respectively.Since either Cu(O) or Fe(Ⅱ)would be inefficient in activating oxygen to produce ·OH,a stage-evolution mechanism of O_(2) activated by nano Fe/Cu bimetals was proposed involving:(a) Rapid consumption of Fe(0) and release of Fe(Ⅱ) based on the Cu-Fe galvanic corrosion,(b) adsorption and transformation of O_(2) to O_(2)2 at the nCu surface,and(c) Fe(Ⅱ)-catalyzed activation of the adsorbed O_(2)2 to ·OH. 展开更多
关键词 Advanced oxidation Nano Fe/Cu bimetals O_(x)ygen activation Hydroxyl radical Heterogeneous catalysis
原文传递
Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors:Overview 被引量:5
8
作者 Li‑Yuan Zhu Lang‑Xi Ou +3 位作者 Li‑Wen Mao Xue‑Yan Wu Yi‑Ping Liu Hong‑Liang Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期353-427,共75页
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring,exhaled breath diagnosis,and food freshness analys... Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring,exhaled breath diagnosis,and food freshness analysis.Among various chemiresistive sensing materials,noble metal-decorated semiconducting metal oxides(SMOs)have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals.This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures(e.g.,nanoparticles,nanowires,nanorods,nanosheets,nanoflowers,and microspheres)for high-performance gas sensors with higher response,faster response/recovery speed,lower operating temperature,and ultra-low detection limits.The key topics include Pt,Pd,Au,other noble metals(e.g.,Ag,Ru,and Rh.),and bimetals-decorated SMOs containing ZnO,SnO_(2),WO_(3),other SMOs(e.g.,In_(2)O_(3),Fe_(2)O_(3),and CuO),and heterostructured SMOs.In addition to conventional devices,the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed.Moreover,the relevant mechanisms for the sensing performance improvement caused by noble metal decoration,including the electronic sensitization effect and the chemical sensitization effect,have also been summarized in detail.Finally,major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed. 展开更多
关键词 Noble metal BIMETAL Semiconducting metal oxide Chemiresistive gas sensor Electronic sensitization Chemical sensitization
下载PDF
Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: A review 被引量:3
9
作者 Guangyu Li Wenming Jiang +4 位作者 Feng Guan Zheng Zhang Junlong Wang Yang Yu Zitian Fan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3059-3098,共40页
Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of lo... Mg/Al bimetal combines the advantages of both aluminum and magnesium and has broad application prospects in automotive, aerospace,weapons, digital products and so on. The compound casting has the characteristics of low cost, easy to achieve metallurgical combination and suitable for the preparation of complex bimetallic parts. However, bimetallic joint strength is low due to differences of physical properties between Al and Mg, oxide film on metallic surface and interfacial Al-Mg IMCs, which is closely related to the interfacial microstructure and properties. Therefore, how to control the interface of the bimetal to achieve performance enhancement is the focus and difficulty in this field. At present, there are mainly the following strengthening methods. First, the “zincate galvanizing” and “electrolytic polishing+anodic oxidation” technology were exert on the surface of Al alloy to remove and break the oxide film, which improved the wettability between Al and Mg. Second, the undesirable Al-Mg IMCs were reduce or elimination by adding the interlayers(Zn, Ni and Ni-Cu). Thirdly, the evolution process of interfacial microstructure was changed and fine strengthening phases were formed by adding Si element to Al alloy or rare earth element to Mg alloy. Fourthly, mechanical vibration and ultrasonic vibration were applied in the process of the filling and solidification to refine and homogenize the interfacial structure. Finally, some other methods, including secondary rolling, thermal modification, heat treatment and constructing exterior 3D morphology, also can be used to regulate the interfacial microstructure and compositions. The above strengthening methods can be used alone or in combination to achieve bimetallic strengthening. Finally, the future development direction of the Mg/Al bimetal is prospected, which provides some new ideas for the development and application of the Mg/Al bimetal. 展开更多
关键词 Mg/Al bimetal PREPARATION Compound casting Interfacial regulation Interface strengthening Research progress
下载PDF
Effect of HEA/Al composite interlayer on microstructure and mechanical property of Ti/Mg bimetal composite by solid-liquid compound casting 被引量:3
10
作者 Jin Cheng Jian-hua Zhao +3 位作者 Chun Wang Jing-jing Shangguan Cheng Gu Ya-jun Wang 《China Foundry》 SCIE CAS CSCD 2023年第1期1-11,共11页
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE... In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa. 展开更多
关键词 Ti/Mg bimetal composite microstructure solid-liquid compound casting HEA/Al composite interlayer mechanical property
下载PDF
Effects of mechanical vibration on filling and solidification behavior, microstructure and performance of Al/Mg bimetal by lost foam compound casting 被引量:2
11
作者 Guang-yu Li Feng Guan +3 位作者 Wen-ming Jiang Yuan-cai Xu Zheng Zhang Zi-tian Fan 《China Foundry》 SCIE EI CAS CSCD 2023年第6期469-479,共11页
Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.... Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal. 展开更多
关键词 lost foam casting filling and solidification processes Al/Mg bimetal mechanical vibration MICROSTRUCTURE mechanical properties
下载PDF
Selective hydrogenation of glucose to sorbitol with tannic acid-based porous carbon sphere supported Ni-Ru bimetallic catalysts 被引量:1
12
作者 Ran Xi Yiwei Tang +3 位作者 Richard Lee Smith Jr Xiaoning Liu Le Liu Xinhua Qi 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1719-1727,共9页
Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were us... Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were used as carbon precursor and soft template, respectively, and Ni2+and Ru3+were used as cross-linkers. In the developed method, Ni-Ru particles became uniformly dispersed in the carbon skeleton due to strong coordination bonds between metal ions(Ni2+and Ru^(3+)) and tannic acid molecules and bimetal interactions. The as-synthesized Ni-Ru10:1@PCS catalyst with a loading Ni:Ru mole ratio of 10:1 was applied for the selective hydrogenation of glucose to sorbitol, and provided 99% glucose conversion with a sorbitol selectivity of 100% at 140℃ in 150 min reaction time and exhibited good stability and recyclability in which sorbitol yield remained at 98% after 4 cycles with little or no metal agglomeration. The catalyst was applied to glucose solutions as high as 20 wt% with 97% sorbitol yields being obtained at 140℃ in 20 h. The developed bimetallic porous carbon sphere catalysts take advantage of sustainably-derived materials in their structure and are applicable to related biomass conversion reactions. 展开更多
关键词 Tannic acid Ni–Ru bimetal GLUCOSE SORBITOL Catalytic hydrogenation
下载PDF
Effect of immersion Ni plating on interface microstructure and mechanical properties of Al/Cu bimetal 被引量:5
13
作者 赵佳蕾 接金川 +3 位作者 陈飞 陈航 李廷举 曹志强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1659-1665,共7页
A nickel-based coating was deposited on the pure Al substrate by immersion plating,and the Al/Cu bimetals were prepared by diffusion bonding in the temperature range of 450-550 ℃.The interce microstructure and fractu... A nickel-based coating was deposited on the pure Al substrate by immersion plating,and the Al/Cu bimetals were prepared by diffusion bonding in the temperature range of 450-550 ℃.The interce microstructure and fracture surface of Al/Cu joints were studied by scanning electron microscopy(SEM) and X-ray diffraction(XRD).The mechanical properties of the Al/Cu bimetals were measured by tensile shear and microhardness tests.The results show that the Ni interiayer can effectively eliminate the formation of Al-Cu intermetallic compounds.The Al/Ni interface consists of the Al3Ni and Al3Ni2 phases,while it is Ni-Cu solid solution at the Ni/Cu interce.The tensile shear strength of the joints is improved by the addition of Ni interiayer.The joint with Ni interiayer annealed at 500 ℃ exhibits a maximum value of tensile shear strength of 34.7 MPa. 展开更多
关键词 Al/Cu bimetal immersion Ni plating INTERFACE diffusion bonding INTERMETALLICS
下载PDF
Fabrication of plain carbon steel/high chromium white cast iron bimetal by a liquid–solid composite casting process 被引量:2
14
作者 V.Javaheri H.Rastegari M.Naseri 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期950-955,共6页
High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement industries. However, in some components, such as the pulverizer plates of ash mills, the poor machi... High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement industries. However, in some components, such as the pulverizer plates of ash mills, the poor machinability of HCWCI creates difficulties. The bimetal casting technique is a suitable method for improving the machinability of HCWCI by joining an easily machined layer of plain carbon steel (PCS) to its hard part. In this study, the possibility of PCS/HCWCI bimetal casting was investigated using sand casting. The investigation was conducted by optical and electron microscopy and non-destructive, impact toughness, and tensile tests. The hardness and chemical composition profiles on both sides of the interface were plotted in this study. The results indicated that a conventional and low-cost casting technique could be a reliable method for producing PCSYdCWCI bimetal. The interfacial microstructure comprised two distinct lay- ers: a very fine, partially spheroidized pearlite layer and a coarse full pearlite layer. Moreover, characterization of the microstructure revealed that the interface was free of defects. 展开更多
关键词 bimetals carbon steel cast iron casting interfaces microstructure mechanical properties
下载PDF
Magnetic graphene oxide-anchored Ni/Cu nanoparticles with a Cu-rich surface for transfer hydrogenation of nitroaromatics 被引量:1
15
作者 Hongbin Shi Qing Liu +3 位作者 Xiaofeng Dai Teng Zhang Yuling Shi Tao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第10期235-246,共12页
The bimetallic nanoparticles compositing of Ni-rich core and Cu-rich shell(Ni/Cu NPs)were successfully synthesized by a liquid-phase thermal decomposition method.The content of copper and nickel in Ni/Cu NPs was contr... The bimetallic nanoparticles compositing of Ni-rich core and Cu-rich shell(Ni/Cu NPs)were successfully synthesized by a liquid-phase thermal decomposition method.The content of copper and nickel in Ni/Cu NPs was controllable by adjusting the ratio of two metal precursors,copper formate(Cuf)and nickel acetate tetrahydrate(Ni(OAc)_(2)·4H_(2)O).Ni/Cu NPs were further anchored on graphene oxide(GO)to prepare a magnetic composite catalyst,called Ni/Cu-GO.The dispersibility of Ni/Cu NPs in solution was enhanced by GO anchoring to prevent the sintering and aggregation during the reaction process,thereby ensuring the catalytic and cycling performance of the catalyst.The catalytic transfer hydrogenation(CTH)reaction of nitroaromatics was investigated when ammonia borane was used as the hydrogen source.Cu dominated the main catalytic role in the reaction,while Ni played a synergistic role of catalysis and providing magnetic properties for separation.The Ni_(7)/Cu_(3)-GO catalyst exhibited the best catalytic performance with the conversion and yield of 99%and 96%,respectively,when 2-methyl-5-nitrophenol was used as the substrate.The Ni_(7)/Cu_(3)-GO catalyst also exhibited excellent cyclic catalytic performance with the 5-amino-2-methylphenol yield of above 90%after six cycles.In addition,the Ni_(7)/Cu_(3)-GO catalyst could be quickly recycled by magnetic separation.Moreover,the Ni_(7)/Cu_(3)-GO catalyst showed good catalytic performance for halogen-containing nitroaromatics without dehalogenation. 展开更多
关键词 NITROAROMATICS Transfer hydrogenation Copper-nickel bimetals Core–shell nanoparticles Magnetic catalysts
下载PDF
FIBER OPTIC TEMPERATURE MEASURING SYSTEM
16
作者 马乃兵 骆飞 +1 位作者 孟爱东 杨春 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1998年第2期34-38,共5页
This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framewo... This paper presents a fiber optic temperature measuring system used for measuring the temperature in many occasions. The system is of reflective type and composed of thermostatic bimetal plate, lever piston framework, optical grating and optical fiber probes. When the temperature changes, the thermostatic bimetal plate deforms. Through lever piston framework, the optical grating produces displacement in the upright direction. Thus the change of the temperature is transformed into the upright displacement of the optical grating. Optical fiber probes are used for detecting the number of streak lines of the optical grating′s displacement depending on the change of temperature. The detected signal can be transmitted to the control center through optical fiber cable up to distance of 1 km. The measurable range of this system reaches 100℃ with accuracy of ±0.2℃. 展开更多
关键词 optical fibers SENSORS TEMPERATURES thermostatic bimetal plates optical gratings
下载PDF
Microstructure and properties of Al/Cu bimetal in liquid-solid compound casting process 被引量:8
17
作者 胡媛 陈翌庆 +2 位作者 李立 胡焕冬 朱子昂 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1555-1563,共9页
A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu ... A Ni-P coating was deposited on Cu substrate by electroless plating and the Al/Cu bimetal was produced by solid?liquid compound casting technology. The microstructure, mechanical properties and conductivity of Al/Cu joints with different process parameters (bonding temperature and preheating time) were investigated. The results showed that intermetallics formed at the interface and the thickness and variety increased with the increase of bonding temperature and preheating time. The Ni?P interlayer functioned as a diffusion barrier and protective film which effectively reduced the formation of intermetallics. The shear strength and conductivity of Al/Cu bimetal were reduced by increasing the thickness of intermetallics. In particular, the detrimental effect of Al2Cu phase was more obvious compared with the others. The sample preheated at 780 ℃ for 150 s exhibited the maximum shear strength and conductivity of 49.8 MPa and 5.29×10^5 S/cm, respectively. 展开更多
关键词 Al/Cu bimetal solid-liquid compound casting electroless Ni plating Al2Cu phase microstructure mechanical properties conductivity
下载PDF
The effect of the support on the surface composition of PtCu alloy nanocatalysts: In situ XPS and HS-LEIS studies 被引量:6
18
作者 黄俊杰 宋艳英 +3 位作者 马冬冬 郑燕萍 陈明树 万惠霖 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1229-1236,共8页
Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface c... Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials. 展开更多
关键词 PtCu alloy Bimetal catalyst Surface composition Phase diagram In situ XPS-LEIS
下载PDF
Effect of homogenization annealing on microstructure, composition and mechanical properties of 7050/6009 bimetal slab 被引量:2
19
作者 闫光远 毛丰 +2 位作者 陈飞 曹志强 王同敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2532-2541,共10页
Homogenization annealing of the 7050/6009 bimetal slab prepared by direct-chill casting was investigated and its effects on microstructural evolution, composition distribution and mechanical properties in the interfac... Homogenization annealing of the 7050/6009 bimetal slab prepared by direct-chill casting was investigated and its effects on microstructural evolution, composition distribution and mechanical properties in the interfacial region of the bimetal were studied. The results show that the optimized homogenization annealing process was 460℃for 24 h. After homogenization annealing, the Zn-rich phases and Al15(FeMn)3Si2phases were precipitated at the interface of the bimetal. The diffusion layer thickness of homogenized bimetal increased by 30 μm from 440 to480℃for 24 h, while it increased by 280 μm from 12 to 36 h at 460℃. The Vickers hardnessesat 6009 alloy side and interface of the bimetal decreased after homogenized annealing and grain coarsening was considered asthedominating softening mechanism.The hardness variation at 7050 alloy side was complicated due to the combined action of solution strengthening, dispersion strengthening and dissolution of reinforced phases. 展开更多
关键词 bimetal slab homogenization annealing MICROSTRUCTURE diffusion layer mechanical properties
下载PDF
Characteristics evolution of 6009/7050 bimetal slab prepared by direct-chill casting process
20
作者 闫光远 毛丰 +4 位作者 陈飞 吴伟 曹志强 王同敏 李廷举 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期895-904,共10页
6009/7050 alloy bimetal slab was prepared by a direct-chill (DC) casting process. Homogenizing annealing, hot rolling and T6 treatment were successively performed and their effects on microstructure and properties of ... 6009/7050 alloy bimetal slab was prepared by a direct-chill (DC) casting process. Homogenizing annealing, hot rolling and T6 treatment were successively performed and their effects on microstructure and properties of the slab were studied. The results reveal that the average diffusion layer thickness of as-cast slab, determined by interdiffusion of elements Zn, Cu, Mg and Si, was about 400 μm. Excellent metallurgical bonding was achieved because all tensile samples fractured on the softer 6009 alloy side after homogenizing annealing. After homogenizing annealing plus rolling, the average diffusion layer thickness decreased to 100 μm, while the network structure of 7050 alloy side transformed to dispersive nubby structure. Furthermore, subsequent T6 treatment resulted in diffusion layer thickness up to 200 μm and an obvious increase of the Vickers hardness for both 7050 and 6009 sides. The layered structure of the as-cast 6009/7050 bimetal is retained after hot rolling and T6 treatment. 展开更多
关键词 7050 alloy bimetal slab direct-chill casting heat treatment hot rolling
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部