The boronizing supply agent of a low-priced solid with RE, the experimental of the boronizing process and the amount of adding RE were studied. The function of RE was discussed. The results show that the symmetrical a...The boronizing supply agent of a low-priced solid with RE, the experimental of the boronizing process and the amount of adding RE were studied. The function of RE was discussed. The results show that the symmetrical and dense boronized layer can be obtained on the surface of steel by using the solid boronizing supply agent with RE element for boronizing, RE can deduce the temperature of boronizing and increase the rate of boronizing and the hardness of boronized layer, and it can also improve the distribution of hardness of boronized layer. The best condition of the solid boronizing supply agent is at 860 ℃ for 4~6 h, and the addition amount of RE is 6%(mass fraction).展开更多
The thickness, brittleness, boron content and morphology of RE boronized layer were investigated. The results show that the service life of the boronized layer in molten zinc can be increased by adding RE element. Th...The thickness, brittleness, boron content and morphology of RE boronized layer were investigated. The results show that the service life of the boronized layer in molten zinc can be increased by adding RE element. The thermocouple and sink roll sleeve made of this material can be used for more than half a year.展开更多
According to the problems of short life and low strength of TiB2 coating cathode for current technology in aluminium electrolysis industry,this work synthesized TiB2-TiB/Ti gradient composite with TiB2 coating and TiB...According to the problems of short life and low strength of TiB2 coating cathode for current technology in aluminium electrolysis industry,this work synthesized TiB2-TiB/Ti gradient composite with TiB2 coating and TiB whiskers in metallic Ti matrix by a electrolytic boronizing method based on similar density and thermal expansivity of the three materials.The phase composition and morphology of the cross-section were determined by X-ray diffraction(XRD),scanning electronic microscope(SEM)and X-ray energy dispersive spectrum(EDS).The results show that uniform TiB2 layer with a thickness of 8-10μm is continuously coated on the surface while the TiB whisker connected with TiB2 layer was embedded dispersedly into the matrix.The TiB crystal whisker has a maximum length of about 220μm.The growth rate of TiB2 and TiB is enhanced by the strong reduction of B4C.The novel gradient design of the composite helps to extend life and improve strength of the TiB2 cathode in aluminium electrolysis.展开更多
The microstructure, thickness, microhardness and wear resistance of single-boronizing, carbonitriding+boronizing and carbonitriding+RE-boronizing layers of 16Mn steel were investigated respectively. Effect of rare ear...The microstructure, thickness, microhardness and wear resistance of single-boronizing, carbonitriding+boronizing and carbonitriding+RE-boronizing layers of 16Mn steel were investigated respectively. Effect of rare earths on microstructure and properties of the penetrated layer were studied and the mechanism of effects of rare earths was discussed. The result showed that the structure, microhardness, brittleness and wear resistance of the penetrated layer after carbonitriding+ RE-boronizing were better than that of conventional boronizing and carbonitriding, especially the wear resistance of boronized layer was increased remarkably. The RE-boronizing layer of the steel is single phase Fe2B, and RE elements enhanced Fe2B (002) direction texture. The distribution of rare earth element (La) in the layer was non-uniform. RE content is higher between borides than that of the interior of borides. An optimum value of the addition of RE element in the agent was 8%. The average service life of the 16Mn steel brick mould treated by carbonitriding+RE-boronizing was 1.5 times as long as the service life of the mould treated by carbonitriding-boronizing.展开更多
The distribution of electric potential in plasma and paste is measured with samples equipped with probes under various technical conditions. A model of boronizing reaction is proposed based on the chemical reaction in...The distribution of electric potential in plasma and paste is measured with samples equipped with probes under various technical conditions. A model of boronizing reaction is proposed based on the chemical reaction in the boronizing agent. A kinetic law of boronizing is deduced from the measured boronizing rate and the quality change under various temperature, time and discharging power conditions.展开更多
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig...Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.展开更多
Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants ...Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on t...Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.展开更多
Microstructure and mechanical properties of additively manufactured TC4 alloys were investigated,following boronizing treatment.The treatment process was carried out at temperatures ranging from 950 to 1050°C and...Microstructure and mechanical properties of additively manufactured TC4 alloys were investigated,following boronizing treatment.The treatment process was carried out at temperatures ranging from 950 to 1050°C and held for 8-15 h.The microstructural features of fabricated boride layers were examined by optical microscopy.The phase compositions of the boride layers were analyzed by X-ray diffraction.The hardness profile through the boride layers was also determined.The results showed that the boride layer of additively manufactured TC4 had a thickness of 51 pm and was composed of an outer TiB2 layer on the top of TiB layer;TiB whiskers wedged into the matrix,forming a strong bond between the boride layer and substrate.The diffusion activation energy was determined to be 80.9 kJ/mol.The matrix was found to transfer from needlelikeα'martensite phase toα+βbiphasic compounds.The newly formed boride layer can reach 1680 HV in hardness,thus imparting a strong protection to 3D-printed part.展开更多
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi...Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.展开更多
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l...The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.展开更多
Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.Th...Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.展开更多
Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide...Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness.展开更多
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s...Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.展开更多
In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moul...In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one.展开更多
Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with n...Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission.展开更多
The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of...The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.展开更多
A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EA...A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.展开更多
文摘The boronizing supply agent of a low-priced solid with RE, the experimental of the boronizing process and the amount of adding RE were studied. The function of RE was discussed. The results show that the symmetrical and dense boronized layer can be obtained on the surface of steel by using the solid boronizing supply agent with RE element for boronizing, RE can deduce the temperature of boronizing and increase the rate of boronizing and the hardness of boronized layer, and it can also improve the distribution of hardness of boronized layer. The best condition of the solid boronizing supply agent is at 860 ℃ for 4~6 h, and the addition amount of RE is 6%(mass fraction).
文摘The thickness, brittleness, boron content and morphology of RE boronized layer were investigated. The results show that the service life of the boronized layer in molten zinc can be increased by adding RE element. The thermocouple and sink roll sleeve made of this material can be used for more than half a year.
基金Project(21473042) supported by the National Natural Science Foundation of ChinaProject(GUIKE-AD18126001) supported by the Guangxi Science and Technology Special Project on Bases and Talents,China
文摘According to the problems of short life and low strength of TiB2 coating cathode for current technology in aluminium electrolysis industry,this work synthesized TiB2-TiB/Ti gradient composite with TiB2 coating and TiB whiskers in metallic Ti matrix by a electrolytic boronizing method based on similar density and thermal expansivity of the three materials.The phase composition and morphology of the cross-section were determined by X-ray diffraction(XRD),scanning electronic microscope(SEM)and X-ray energy dispersive spectrum(EDS).The results show that uniform TiB2 layer with a thickness of 8-10μm is continuously coated on the surface while the TiB whisker connected with TiB2 layer was embedded dispersedly into the matrix.The TiB crystal whisker has a maximum length of about 220μm.The growth rate of TiB2 and TiB is enhanced by the strong reduction of B4C.The novel gradient design of the composite helps to extend life and improve strength of the TiB2 cathode in aluminium electrolysis.
基金the Natural Science Foundation of Chongqing (2006BB4391)
文摘The microstructure, thickness, microhardness and wear resistance of single-boronizing, carbonitriding+boronizing and carbonitriding+RE-boronizing layers of 16Mn steel were investigated respectively. Effect of rare earths on microstructure and properties of the penetrated layer were studied and the mechanism of effects of rare earths was discussed. The result showed that the structure, microhardness, brittleness and wear resistance of the penetrated layer after carbonitriding+ RE-boronizing were better than that of conventional boronizing and carbonitriding, especially the wear resistance of boronized layer was increased remarkably. The RE-boronizing layer of the steel is single phase Fe2B, and RE elements enhanced Fe2B (002) direction texture. The distribution of rare earth element (La) in the layer was non-uniform. RE content is higher between borides than that of the interior of borides. An optimum value of the addition of RE element in the agent was 8%. The average service life of the 16Mn steel brick mould treated by carbonitriding+RE-boronizing was 1.5 times as long as the service life of the mould treated by carbonitriding-boronizing.
文摘The distribution of electric potential in plasma and paste is measured with samples equipped with probes under various technical conditions. A model of boronizing reaction is proposed based on the chemical reaction in the boronizing agent. A kinetic law of boronizing is deduced from the measured boronizing rate and the quality change under various temperature, time and discharging power conditions.
文摘Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.
基金the Hindustan Institute of Technology and Science for their support.
文摘Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
文摘Boronizing and austempering were successively applied to a GGG-40 grade ductile iron in order to combine the advantages of both process in a single treatment. This new procedure formed a 30 μm thick boride layer on the surface with subsurface matrix structure consisted of acicular ferrite and retained austenite. Reciprocating wear tests showed that successive boronizing and austempering exhibited considerably higher wear resistance than conventional boronizing having a subsurface matrix structure consisting of ferrite and pearlite.
文摘Microstructure and mechanical properties of additively manufactured TC4 alloys were investigated,following boronizing treatment.The treatment process was carried out at temperatures ranging from 950 to 1050°C and held for 8-15 h.The microstructural features of fabricated boride layers were examined by optical microscopy.The phase compositions of the boride layers were analyzed by X-ray diffraction.The hardness profile through the boride layers was also determined.The results showed that the boride layer of additively manufactured TC4 had a thickness of 51 pm and was composed of an outer TiB2 layer on the top of TiB layer;TiB whiskers wedged into the matrix,forming a strong bond between the boride layer and substrate.The diffusion activation energy was determined to be 80.9 kJ/mol.The matrix was found to transfer from needlelikeα'martensite phase toα+βbiphasic compounds.The newly formed boride layer can reach 1680 HV in hardness,thus imparting a strong protection to 3D-printed part.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.
基金supported by Shaanxi Provincial Natural Science Foundation for Distinguished Young Scholars(2022JC)NSFC(41930863,42173023)The Science and Technology Plan Project of Qinghai Province Incentive Fund 2023。
文摘The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.
基金supported by the Science and Technology Special Plan Project from China Minmetals Group (No.2020ZXA01)the International Exchange and Growth Program for Young Teachers (No.QNXM20220061)the National Key Research and Development Program of China (No.2022YFC2906100).
文摘Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.
基金YOK(MEVLANA 2018-9999-Proj-ect-Based International Exchange Programme)for financial support in inter-national collaboration.
文摘Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness.
基金Project supported by the National Natural Science Foundation of China (Grant No.12074273)the Sichuan Science and Technology Program (Grant No.2022NSFSC1810)。
文摘Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.
基金Funded by the State Grid Henan Electric Power Company Technology Project(No.521790200018)the 2021 Key Scientific Research Projects of Higher Education Institutions in Henan Province(No.21A430047)the Excellent Team Project of Scientific and Technological Innovation in Henan Province(HNST [2017] No.9)。
文摘In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one.
文摘Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission.
基金AP is grateful for the financial support of Science Foundation Ireland(SFI)under grant number 18/SIRG/5621 and Enterprise Ireland under grant number CS20212089DG is grateful to the Australian Research Council(ARC)for a support in the frame of an ARC Laureate project No FL160100089.Open access funding provided by IReL.
文摘The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.
基金funded by the National Key Research and Development Program of China(Nos.2022YFE03130000 and 2022YFE03130003)National Natural Science Foundation of China(Nos.12205336 and 12475208)+2 种基金The Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0790102)the Provincial Natural Science Foundation of Anhui(No.2408085J002)Interdisciplinary and Collaborative Teams of CAS。
文摘A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.