动力电池健康状态(state of health, SOH)估计是电动汽车领域关注的一个热点,目前的大部分方法都是基于实验室测试数据进行估计,忽略了实际车辆运行情况。使用国家大数据联盟平台采集的实际车辆运行数据进行电池SOH的估计。数据预处理方...动力电池健康状态(state of health, SOH)估计是电动汽车领域关注的一个热点,目前的大部分方法都是基于实验室测试数据进行估计,忽略了实际车辆运行情况。使用国家大数据联盟平台采集的实际车辆运行数据进行电池SOH的估计。数据预处理方面,在清洗异常数据时,保留了实车数据中合理的强噪声数据,保证了数据的真实性。特征选择方面,选择容量增量曲线峰值和对应的电压以及基于安时积分得到的小片段充电容量数据。算法方面,针对真实数据的弱时序性问题,利用反向传播-自适应推进(back propagation-adapt boost, BP-AdaBoost)算法进行电池SOH估计的研究。最后,利用同一类型三辆车的数据进行了模型训练、测试和验证,预测结果与长短期记忆-循环神经网络(long short term memory-recurrent neural network, LSTM-RNN)算法对比,BP-AdaBoost算法估计误差更小,平均绝对误差达到0.96%,因此,所提出的方法可以应用于实车电池SOH的高精度估计。展开更多
文摘动力电池健康状态(state of health, SOH)估计是电动汽车领域关注的一个热点,目前的大部分方法都是基于实验室测试数据进行估计,忽略了实际车辆运行情况。使用国家大数据联盟平台采集的实际车辆运行数据进行电池SOH的估计。数据预处理方面,在清洗异常数据时,保留了实车数据中合理的强噪声数据,保证了数据的真实性。特征选择方面,选择容量增量曲线峰值和对应的电压以及基于安时积分得到的小片段充电容量数据。算法方面,针对真实数据的弱时序性问题,利用反向传播-自适应推进(back propagation-adapt boost, BP-AdaBoost)算法进行电池SOH估计的研究。最后,利用同一类型三辆车的数据进行了模型训练、测试和验证,预测结果与长短期记忆-循环神经网络(long short term memory-recurrent neural network, LSTM-RNN)算法对比,BP-AdaBoost算法估计误差更小,平均绝对误差达到0.96%,因此,所提出的方法可以应用于实车电池SOH的高精度估计。