期刊文献+
共找到598篇文章
< 1 2 30 >
每页显示 20 50 100
基于BP-PSO的智能阀门定位器控制算法研究 被引量:7
1
作者 高阳 傅连东 +1 位作者 邓江洪 湛从昌 《流体机械》 CSCD 北大核心 2023年第5期49-54,共6页
针对五步开关控制算法易超调以及控制参数取值具有近似性和不确定性等不足,提出了一种参数自整定和参数寻优的控制算法,并在最关键的脉冲调制控制环节运用了改进的BP神经网络算法和粒子群(PSO)算法来寻找最优阀门控制参数。搭建智能阀... 针对五步开关控制算法易超调以及控制参数取值具有近似性和不确定性等不足,提出了一种参数自整定和参数寻优的控制算法,并在最关键的脉冲调制控制环节运用了改进的BP神经网络算法和粒子群(PSO)算法来寻找最优阀门控制参数。搭建智能阀门定位器实验平台,采用传统五步开关控制算法和本控制算法分别对阀门进行控制试验。结果表明,本控制算法相较于传统五步开关控制算法的适用性大大增强,避免了超调,缩短了响应时间,阀门控制精度达到0.03%,阀门开度稳定时间缩短至1 s以内。 展开更多
关键词 智能阀门定位器 参数自整定 BP神经网络优化 PSO粒子群算法
下载PDF
基于BP-PSO的SVC附加阻尼控制大电网试验
2
作者 郑连清 曾治强 唐永红 《电力科学与工程》 2018年第3期7-13,共7页
静止无功补偿器是电网的重要设备,参数选择将直接影响其性能。然而,传统参数优化方法只能适用于简单网络,为了在交直流复杂电网中有良好的应用,提出了反向传播神经网络—粒子群算法(BP-PSO)用于全网模型下对SVC阻尼控制器参数的优化。PS... 静止无功补偿器是电网的重要设备,参数选择将直接影响其性能。然而,传统参数优化方法只能适用于简单网络,为了在交直流复杂电网中有良好的应用,提出了反向传播神经网络—粒子群算法(BP-PSO)用于全网模型下对SVC阻尼控制器参数的优化。PSO算法的目标函数用训练好的BP神经网络拟合而成的参数曲线替代。利用PSASP构建了全网的机电模型并进行网络划分,在ADPSS上搭建含有SVC及其附近变电站的电磁模型,从而组成一个闭环的、实时的试验平台来验证该算法的准确性。实验结果表明,在SVC投入大电网时,应用本文算法优化后的阻尼控制器能抑制系统低频振荡,线路有功功率阻尼比大致可以提高2%到3%。 展开更多
关键词 静止无功补偿器 电力系统全数字仿真装置 bp-pso算法 低频振荡
下载PDF
基于BP-PSO联合算法的沥青混合料空隙率反演计算 被引量:5
3
作者 张蓓 李松涛 +2 位作者 钟燕辉 李晓龙 高燕龙 《大连理工大学学报》 EI CAS CSCD 北大核心 2020年第1期75-82,共8页
为提高沥青混合料空隙率反演计算效率,提出一种基于BP神经网络和PSO联合算法的沥青混合料空隙率反演计算方法.通过建立探地雷达电磁波在沥青路面结构层中的传播仿真模型,利用BP神经网络对仿真样本进行训练,得到能够反映输入和输出关系... 为提高沥青混合料空隙率反演计算效率,提出一种基于BP神经网络和PSO联合算法的沥青混合料空隙率反演计算方法.通过建立探地雷达电磁波在沥青路面结构层中的传播仿真模型,利用BP神经网络对仿真样本进行训练,得到能够反映输入和输出关系的回归曲面.利用PSO算法对回归曲面进行寻优,得到最优解.将该联合算法应用于沥青混合料空隙率反演计算中,反演计算结果表明:该联合算法能够在满足计算精度的条件下大幅提高计算效率,证明应用该联合算法反演计算沥青混合料空隙率的可行性和有效性. 展开更多
关键词 BP神经网络 PSO算法 联合算法 空隙率 反演
下载PDF
基于高光谱成像技术的南果梨酸度无损检测方法 被引量:1
4
作者 张芳 邓照龙 +3 位作者 田有文 高鑫 王开田 徐正玉 《沈阳农业大学学报》 CAS CSCD 北大核心 2024年第2期231-239,共9页
南果梨是一种重要的水果品种,其酸度是评估果品质量的重要指标之一。然而,传统的南果梨酸度检测方法通常需要破坏性采样和化学分析,不仅耗时费力,而且容易导致样品污染和浪费。因此,旨在探索一种基于高光谱成像技术的无损检测方法,以实... 南果梨是一种重要的水果品种,其酸度是评估果品质量的重要指标之一。然而,传统的南果梨酸度检测方法通常需要破坏性采样和化学分析,不仅耗时费力,而且容易导致样品污染和浪费。因此,旨在探索一种基于高光谱成像技术的无损检测方法,以实现对南果梨酸度的快速、准确、无损检测。首先,采集室温20℃下不同贮藏天数南果梨的高光谱数据,其光谱波长范围为400~1000 nm,并且通过理化实验测量南果梨样本的可滴定酸;其次,采用多元散射校正(multipli⁃cative scatter correction,MSC)、标准正态变换(standard normal variate,SNV)、Savitzky-Golay平滑滤波等多种方法对光谱数据进行预处理,建立偏最小二乘回归模型(partial least squares regression,PLSR),选择出建模效果最佳的预处理方法,结果显示MSC方法效果最优;然后结合连续投影算法(successie projection algorithm,SPA)提取特征波段,在700~900 nm范围内确定9个特征光谱变量;最后,以提取出的9个特征光谱变量作为输入矢量,分别建立PLSR模型、极限学习机(extreme learning machine,ELM)模型以及遗传算法(genetic algorithm,GA)和粒子群算法(particle swarm op⁃timization,PSO)优化的BP神经网络模型。研究结果表明,基于MSC预处理和SPA算法特征提取的PSO-BP模型预测精度最高,效果最好,预测集决定系数R^(2)_(p)=0.911,RMSEP=0.032。可见,基于高光谱成像技术的SPA-PSO-BP模型可用于南果梨酸度的检测,为南果梨的品质评价提供参考。 展开更多
关键词 高光谱成像技术 南果梨 酸度 BP神经网络 PSO-BP模型
下载PDF
基于小波变换和GA-BP神经网络的电力电缆故障定位 被引量:2
5
作者 徐先峰 马志雄 +2 位作者 姚景杰 李芷菡 王轲 《电气工程学报》 CSCD 北大核心 2024年第2期146-155,共10页
由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程... 由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程度和波动次数的基础上,选择多贝西小波(Daubechies wavelet 6,Db6)作为小波基函数,对于各故障位置,采集正向故障行波的α模分量,并对其进行小波分解。选取在d1尺度下的模极大值点作为特征值,同时将故障距离作为标签值,从而构建了训练和测试样本数据集;利用遗传算法(Genetic algorithm,GA)的种群进化和全局最优搜寻能力来改善误差逆传播(Back propagation,BP)网络对初始权重敏感的缺点,并使用优化后的权值、阈值重新对BP神经网络进行训练和预测,最后通过与传统双端行波定位算法、BP算法、粒子群优化BP算法(Particle swarm optimization BP,PSO-BP)相比较,证明了所提方法在测距性能方面的优越性。 展开更多
关键词 小波变换 模极大值 双端测距 BP神经网络 PSO-BP神经网络 GA-BP神经网络
下载PDF
基于斜坡单元灾害强度的滑坡灾害易损性评价——以湖南省湘乡市为例 被引量:1
6
作者 陈宾 魏娜 +3 位作者 张联志 李颖懿 刘宁 屈添强 《中国地质灾害与防治学报》 CSCD 2024年第2期137-145,共9页
以斜坡为单元,基于潜在灾害强度的区域性易损性评价是地质灾害防治亟待解决的重要问题之一。以湖南省湘乡市为研究区,在采用加权信息量方法进行易发性区划的基础上,逐个提取斜坡单元最高易发值点的高程、坡高、坡度、坡向、月平均降雨... 以斜坡为单元,基于潜在灾害强度的区域性易损性评价是地质灾害防治亟待解决的重要问题之一。以湖南省湘乡市为研究区,在采用加权信息量方法进行易发性区划的基础上,逐个提取斜坡单元最高易发值点的高程、坡高、坡度、坡向、月平均降雨量为特征参数,分别代入BP神经网络、PSO-BP神经网络、随机森林及支持向量机模型。通过训练与精度测试对比,构建基于PSO优化BP神经网络算法的滑坡体积预测模型,建立以灾害体积为灾害强度指标,以建筑密度、人口密度、财产密度等为脆弱性指标的易损性综合评价模型。针对研究区开展基于潜在灾害强度的区域性易损性评价,完成高易损区(面积占比1.5%)、中易损区(面积占比28.5%)和低易损区(面积占比70%)的区划,实现了区域性易损性评价过程中致灾体灾害强度与承灾体脆弱性的有机结合,增强了评价的客观性和科学性。 展开更多
关键词 滑坡易损性评价 滑坡体积 PSO-BP神经网络 斜坡单元
下载PDF
基于PSO-BP神经网络的分拣机器人视觉反馈跟踪 被引量:1
7
作者 杨静宜 白向伟 《国外电子测量技术》 2024年第1期166-172,共7页
针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信... 针对分拣机器人视觉反馈跟踪精度差、耗时较长的问题,研究基于粒子群算法-反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络的分拣机器人视觉反馈跟踪方法,以提升视觉反馈跟踪效果。依据分拣机器人的视觉反馈信息,建立分拣机器人运动学模型,并求解分拣机器人机械臂输出位置和输入位置的误差函数;利用PSO算法优化BP神经网络的权值与偏置;在权值与偏置优化后的BP神经网络内,输入误差函数,预测分拣机器人视觉反馈跟踪控制量;利用预测视觉反馈跟踪控制量,在线调整增量式比例-积分-微分(proportional-integral-derivative,PID)的参数,输出高精度的分拣机器人视觉反馈跟踪控制量,实现分拣机器人视觉反馈跟踪。实验结果表明,该方法可有效视觉反馈跟踪分拣机器人机械臂的关节角;存在干扰情况下,在运行时间为10 s左右时,阶跃响应趋于稳定;有干扰情况下,视觉反馈跟踪的平均误差为0.09 cm,耗时平均值为0.10 ms;无干扰情况下,平均误差为0.03 cm,耗时平均值为0.04 ms。 展开更多
关键词 PSO-BP神经网络 分拣机器人 视觉反馈跟踪 运动学模型 误差函数 增量式PID
下载PDF
基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究 被引量:1
8
作者 陈志鼎 李小龙 +2 位作者 李广聪 万山涛 董亿 《水电能源科学》 北大核心 2024年第2期67-71,共5页
为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法... 为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法,建立盾构推力、掘进速度、刀盘转速、刀盘扭矩4种掘进参数为输入集,地层编码为输出集的地层识别模型。工程数据的验证结果表明,该模型在珠三角水资源配置工程数据集上的掘进地层的识别准确率达99.07%,PSO-BP神经网络算法的识别准确率明显高于BP、RF、RBF、CNN等机械学习算法。 展开更多
关键词 泥水平衡盾构机 掘进参数 地层识别 PSO-BP神经网络
下载PDF
基于改进 PSO-BPNN 的拖拉机液压油品质监测
9
作者 李仲兴 朱方喜 +1 位作者 刘炳晨 郗少华 《中国农机化学报》 北大核心 2024年第10期140-146,共7页
为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉... 为实现对拖拉机液压油品质的有效监测,保障拖拉机液压系统的平稳运行,基于改进PSO-BPNN设计一种针对拖拉机液压油品质的监测方法。首先,为研究拖拉机液压油品质恶化情况,在液压油新油的基础上配制不同比例的液压油油样。随后,搭建拖拉机液压油品质监测试验装置,并依据试验装置采集与监测液压油粘度、介电常数和温度参数。然后,设计并搭建一种基于改进PSO-BPNN的拖拉机液压油品质监测模型,该模型利用正弦调整惯性权重的PSO算法优化BPNN的权值和阈值初始值,提高模型收敛效率。最后,为验证基于改进PSO-BPNN的液压油品质监测方法的可行性,与基于传统BPNN、标准PSO-BPNN的拖拉机液压油品质监测模型进行对比。结果表明,基于改进PSO-BPNN的拖拉机液压油品质监测方法具有较快的收敛速度,监测正确率达到97.78%,为优化拖拉机液压油品质监测方法提供参考。 展开更多
关键词 拖拉机 液压油品质 改进PSO算法 BP神经网络
下载PDF
基于NB-IoT技术的环境监测系统优化设计
10
作者 苏兴龙 《粘接》 CAS 2024年第3期185-188,共4页
为进一步提升工业生产过程的安全系数,提出一种基于窄带物联网NB-IoT的环境监测系统。其中,以NB-IoT技术作为系统的主要通信,以传感器为主要的环境数据采集工具,以改进的BP神经网络作为预测方法进行环境风险预测。实验结果表明,与传统... 为进一步提升工业生产过程的安全系数,提出一种基于窄带物联网NB-IoT的环境监测系统。其中,以NB-IoT技术作为系统的主要通信,以传感器为主要的环境数据采集工具,以改进的BP神经网络作为预测方法进行环境风险预测。实验结果表明,与传统的BP神经网络相比,经过粒子群算法PSO优化的BP神经网络具有更高的预测精度,且稳定性较好,将其应用于环境风险的预测时误差始终保持在1%的误差范围内。设计的基于NB-IoT的环境监测系统能够进行准确的数据采集和风险预测,能够进一步保障生产安全,可行性较高。 展开更多
关键词 环境监测 NB-IoT技术 BP神经网络 PSO算法
下载PDF
基于PSO-BP的岩性识别方法研究
11
作者 高雅田 杨俊国 《计算机与数字工程》 2024年第4期1119-1124,共6页
近些年来,数据分析、深度学习技术取得了长足的发展,并为社会带来了可观的收益。故利用深度学习手段进行岩性识别也成为了一个研究热点。岩性识别是录井解释的核心业务,准确而有效地预测储层性质对石油勘探工作有着重大意义。为解决传... 近些年来,数据分析、深度学习技术取得了长足的发展,并为社会带来了可观的收益。故利用深度学习手段进行岩性识别也成为了一个研究热点。岩性识别是录井解释的核心业务,准确而有效地预测储层性质对石油勘探工作有着重大意义。为解决传统岩性识别方法成本高、耗时长等缺点。论文利用松辽盆地中若干井的测井数据进行模型研究,提出了一种基于PSO-BP的岩性识别方法。通过对测井源数据进行数据预处理、构建网络识别模型、优化岩性识别模型、评价模型输出结果等步骤,实现基于PSO-BP岩性识别方法。经过反复试验,结果表明采用PSO-BP的岩性识别方法对岩性进行识别的平均准确率可达92.2%,为储层预测工作提供了可靠的支撑。 展开更多
关键词 BP神经网络 粒子群优化算法 岩性识别 数据预处理 KNN 支持向量机
下载PDF
基于人工智能方法的隧道塌方风险预测研究 被引量:1
12
作者 刘志锋 陈名煜 +1 位作者 吴修梅 魏振华 《水力发电》 CAS 2024年第3期31-38,共8页
为了对隧道塌方风险展开研究,整理246起隧道塌方事故案例,通过建立塌方风险评估指标体系,基于人工智能预测方法,分别采用随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型,对塌方风险进行预测。结果表... 为了对隧道塌方风险展开研究,整理246起隧道塌方事故案例,通过建立塌方风险评估指标体系,基于人工智能预测方法,分别采用随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型,对塌方风险进行预测。结果表明,随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型的塌方预测准确率分别为81.67%、83.33%、86.67%、93.33%,F_(1)值分别为0.645、0.642、0.5、0.833。粒子群算法优化BP神经网络模型预测准确率和F_(1)值均大幅提高,预测效果最好,大大减少了评估结果的主观性,为隧道塌方风险研究提供了新的研究思路。 展开更多
关键词 隧道工程 塌方 风险预测 随机森林算法 径向基函数神经网络 BP神经网络 粒子群算法
下载PDF
基于AM-PSO-BP神经网络的打印路径规划
13
作者 李冰 《模具技术》 2024年第1期33-41,共9页
为提高弧焊焊接效果,提出一种基于AM-PSO-BP神经网络的弧焊打印路径规划方法。方法采用基于自适应方差的自适应变异操作(AM)消除粒子群优化算法(PSO)后期迭代效率低的问题,然后利用AM-PSO算法优化BP(back propagation)神经网络的权重和... 为提高弧焊焊接效果,提出一种基于AM-PSO-BP神经网络的弧焊打印路径规划方法。方法采用基于自适应方差的自适应变异操作(AM)消除粒子群优化算法(PSO)后期迭代效率低的问题,然后利用AM-PSO算法优化BP(back propagation)神经网络的权重和阈值,实现BP神经网络参数的优化;最后将AM-PSO-BP神经网络算法对弧焊打印工艺参数进行预测,获取更准确的弧焊打印工艺参数。仿真结果表明:所提方法可精确预测弧焊打印工艺参数,在该工艺参数下,弧焊打印的六边形柱体、圆柱体、正方体预测值与实测值相差较小,且在误差允许范围内,具有较高的准确性。以上方法可为精确弧焊打印提供依据。 展开更多
关键词 弧焊打印 路径规划 PSO算法 自适应变异 BP神经网络
下载PDF
基于SBAS-InSAR和PSO-BP模型的鲁南高铁沿线地表沉降监测与预测 被引量:1
14
作者 何虎振 刘国林 +1 位作者 王凤云 陶秋香 《大地测量与地球动力学》 CSCD 北大核心 2024年第8期820-826,共7页
选取38景Sentinel-1A SAR影像,利用SBAS-InSAR技术获取2019-02~2022-11鲁南高铁曲阜-菏泽段沿线5 km区域的地表沉降结果,分析其分布特征和规律,并利用PSO-BP模型对若干特征点进行沉降预测。结果表明,高铁沿线0.1 km范围内地表年均形变... 选取38景Sentinel-1A SAR影像,利用SBAS-InSAR技术获取2019-02~2022-11鲁南高铁曲阜-菏泽段沿线5 km区域的地表沉降结果,分析其分布特征和规律,并利用PSO-BP模型对若干特征点进行沉降预测。结果表明,高铁沿线0.1 km范围内地表年均形变速率为-20~15 mm/a,最大沉降速率为25.46 mm/a,最大抬升速率为17.43 mm/a;PSO-BP模型得到的沉降预测值的RMSE为5.8~12.4 mm,可对地表沉降进行较好的预测。 展开更多
关键词 鲁南高铁 SBAS-InSAR PSO-BP模型 地表沉降 沉降预测
下载PDF
干涉式闭环光纤陀螺仪的PSO-PID控制优化方法 被引量:1
15
作者 刘尚波 丹泽升 +2 位作者 廉保旺 徐金涛 曹辉 《红外与激光工程》 EI CSCD 北大核心 2024年第3期242-253,共12页
控制系统的设计会对响应速度快且应用范围较广的数字干涉式闭环光纤陀螺(ICFOG)动态性能产生影响。通过分析ICFOG的工作原理,推导出闭环离散控制系统,并利用粒子群优化算法(Particle Swarm Optimization,PSO)对传统的PID控制器参数进行... 控制系统的设计会对响应速度快且应用范围较广的数字干涉式闭环光纤陀螺(ICFOG)动态性能产生影响。通过分析ICFOG的工作原理,推导出闭环离散控制系统,并利用粒子群优化算法(Particle Swarm Optimization,PSO)对传统的PID控制器参数进行优化。基于这个优化过程,设计一种新型的PSO-PID复合控制器,以取代传统的PID控制器。通过与其他BP神经网络、模糊控制等方法进行对比凸显该控制方法的优越。通过数字仿真分析显示,跟踪速度相较于BP-PID控制方法提高了1.91倍,相对于PID控制方法提高了3.5倍,相对于F-PID控制方法提高了1.75倍。同时,控制精度相对于BP-PID控制方法提高了46.03%,相对于PID控制方法提高了66.30%,相对于F-PID控制方法提高了45.27%。结果显示,采用PSO-PID控制器能够快速达到控制目标且具有较小的超调量。 展开更多
关键词 干涉式光纤陀螺 小超调量 粒子群优化PID方法 BP神经网络 模糊控制器
下载PDF
基于GA-BP和PSO-BP神经网络的SLM GH3625高温合金残余应力预测研究
16
作者 曾权 李鑫 +5 位作者 王克鲁 鲁世强 刘杰 黄文杰 周潼 汪增强 《塑性工程学报》 CAS CSCD 北大核心 2024年第3期193-199,共7页
采用PSO-BP和GA-BP混合算法的人工神经网络模型预测了选区激光熔化成形GH3625高温合金的残余应力。通过响应面法为实验设计生成样本集,以激光功率、扫描速度和扫描间距作为模型的输入层,以残余应力作为模型的输出层进行预测优化。采用... 采用PSO-BP和GA-BP混合算法的人工神经网络模型预测了选区激光熔化成形GH3625高温合金的残余应力。通过响应面法为实验设计生成样本集,以激光功率、扫描速度和扫描间距作为模型的输入层,以残余应力作为模型的输出层进行预测优化。采用相关系数R^(2)和平均绝对相对误差e_(AARE)评价指标对预测模型进行了验证和对比分析。结果表明:BP、 GA-BP和PSO-BP神经网络模型均能够较好地预测不同工艺参数下GH3625高温合金的残余应力,且通过算法优化后的BP神经网络具有更高的预测精度。其中GA-BP神经网络对选区激光熔化成形GH3625高温合金残余应力的预测精度最高,模型性能更优越,其相关系数R^(2)和相对平均绝对误差e_(AARE)分别为0.909和2.06%。 展开更多
关键词 选区激光熔化 GH3625高温合金 残余应力 GA-BP神经网络 PSO-BP神经网络
下载PDF
基于激光熔化技术加工工艺参数优化研究 被引量:1
17
作者 赵渭平 任伟 +1 位作者 张雷伟 张华 《粘接》 CAS 2024年第1期129-132,共4页
为进一步提升选区激光熔化技术加工材料的质量,提出一种基于PSO-BP神经网络的工艺参数优化模型,通过提升致密度进一步提升材料质量。其中,使用粒子群优化算法PSO对BP神经网络进行参数优化,进一步提升参数优化预测精度。实验结果表明,与... 为进一步提升选区激光熔化技术加工材料的质量,提出一种基于PSO-BP神经网络的工艺参数优化模型,通过提升致密度进一步提升材料质量。其中,使用粒子群优化算法PSO对BP神经网络进行参数优化,进一步提升参数优化预测精度。实验结果表明,与基于传统的BP神经网络优化预测模型相比,基于PSO-BP神经网络的工艺参数优化模型具有更高的预测精度,优化后的预测致密度值更加接近于真实值,且优化预测过程的稳定性更好,更加适用于选区激光熔化技术的工艺参数优化,实现效果更佳的质量提升。 展开更多
关键词 材料制备 选区激光熔化技术 BP神经网络 PSO
下载PDF
基于粒子群算法优化BP神经网络的轴承故障诊断 被引量:1
18
作者 樊怀聪 田禾 +1 位作者 冯明文 曹冉冉 《机械制造与自动化》 2024年第3期45-49,共5页
通过PSO优化BP神经网络的权值和阈值,采用此算法对滚动轴承进行故障诊断,以驱动端加速度数据和风扇端加速度数据作为输入,通过训练网络输出轴承3种不同状态,实现对轴承的故障诊断。仿真结果表明:此网络模型能够准确识别出轴承运行状态... 通过PSO优化BP神经网络的权值和阈值,采用此算法对滚动轴承进行故障诊断,以驱动端加速度数据和风扇端加速度数据作为输入,通过训练网络输出轴承3种不同状态,实现对轴承的故障诊断。仿真结果表明:此网络模型能够准确识别出轴承运行状态和故障类型,正常样本测试准确率达到98%,并且相对于BP神经网络来说测试精度和准确性都有较大提升,泛化能力更强,可行性高。 展开更多
关键词 轴承 故障诊断 BP神经网络 粒子群算法
下载PDF
基于多机场终端区交通态势的航班延误预测
19
作者 张兆宁 查子奇 《科学技术与工程》 北大核心 2024年第12期5220-5226,共7页
为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势... 为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势进行分析的基础上,建立6个描述终端区交通态势的指标。接着,构建反向传播(back propagation,BP)神经网络航班延误预测模型,将终端区交通态势指标、航班信息和天气环境数据等作为输入,航班延误时间作为输出,并利用粒子群优化算法(particle swarm optimization,PSO)优化BP神经网络进行训练。通过实例验证和分析,基于多机场终端区交通态势的航班延误预测能够有效提高预测准确率,同时,通过粒子群优化BP神经网络的预测模型预测准确率均高于一般的考虑交通态势的BP和遗传算法优化的BP神经网络模型(genetic algorithm and back propagation,GA-BP)。 展开更多
关键词 多机场 航班延误预测 终端区交通态势 反向传播(BP)神经网络 粒子群优化算法(PSO)
下载PDF
BP-PSO-based intelligent case retrieval method for high-rise structural form selection 被引量:10
20
作者 ZHANG ShiHai OU JinPing 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第4期940-944,共5页
Modern architectures are developing in the direction of tall buildings and complex structures,and the theoretical analysis and the design experience have seriously lagged behind the construction of super high-rise str... Modern architectures are developing in the direction of tall buildings and complex structures,and the theoretical analysis and the design experience have seriously lagged behind the construction of super high-rise structures.Structural form selection,especially the case based reasoning (CBR) based structural form selection,is a promising tool for the construction of high-rise structures.In view of the limit of cognitive ability of domain experts,a BP (back propagation)-PSO (particle swarm optimization)-based intelligence case retrieval method for high-rise structural form selection is proposed.The CBR-based case retrieval method and the construction of the BP-PSO neutral network are introduced.And then the BP-PSO-based case retrieval method is validated by some engineering cases.The results of training and prediction indicate that the proposed method has good ability to retrieve the cases of high-rise structures. 展开更多
关键词 structural form selection case based reasoning high-rise structure bp-pso neutral network
原文传递
上一页 1 2 30 下一页 到第
使用帮助 返回顶部