This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
BRBF(buckling restrained braced frame)is a relatively new lateral force resisting system for building structures.BRBFs are used mostly to resist seismic force due to their high ductility after yielding and the ability...BRBF(buckling restrained braced frame)is a relatively new lateral force resisting system for building structures.BRBFs are used mostly to resist seismic force due to their high ductility after yielding and the ability to absorb higher strain energy.ASCE(American Society of Civil Engineers)first permits the use of BRBFs as a single seismic force-resisting system by quantifying the seismic parameters such as response modification coefficient(R),over-strength factor(Ωo)and deflection amplification factor(Cd)for a structure built with BRBF,in their 2010 code(ASCE 7-10).But it has not been investigated how a structure built with BRBF,which is primarily designed to resist seismic force,and behaves under sudden occurrence of a blast load.This research investigates the performance of a BRBF subjected to blast loading.In other words,this paper focuses on the effect of blast loading on BRBF.The architype for this investigation is a chevron type braced frame.The frame is subjected to a short duration blast load that lasts only 21.7 mili-second(ms).Blast loading effects on the braced frame are assessed by identifying the weakest plane of failure,deformation characteristics and out of plane bending.The research investigates how the properties of the surrounding concrete,especially compressive strength,affect the overall strength of the BRBF on resisting blast loading.It is observed that the compressive strength of the surrounding concrete plays a significant role in reducing the deformation characteristics,both in-plane and out-of-plane.展开更多
Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS ...Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center,Lehigh University to prepare for an upcoming experimental program.The analysis program DRAIN-2DX was used to model a one-bay,four-story prototype BRBF including material and geometric nonlinearities.The buckling- restrained brace(BRB)model incorporates both isotropic and kinematic hardening.Nonlinear static pushover and time- history analyses were performed on the prototype BRBF.Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results.Particular emphasis was placed on global ductility demands and ductility demands on the BRBs.These demands were compared with anticipated ductility capacities.The analysis results,along with results from similar previous studies,are used to evaluate the BRBF design provisions that have been recommended for codification in the United States.The results show that BRB maximum ductility demands can be as high as 20 to 25.These demands significantly exceed those anticipated by the BRBF recommended provisions.Results from the static pushover and time- history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5.Modifications to the testing protocol are recommended.展开更多
Purpose:The purpose of this study was to examine effects of a sport version of a semi-rigid ankle brace (ElementTM) and a soft ankle brace (ASO) on ankle biomechanics and ground reaction forces (GRFs) during a drop la...Purpose:The purpose of this study was to examine effects of a sport version of a semi-rigid ankle brace (ElementTM) and a soft ankle brace (ASO) on ankle biomechanics and ground reaction forces (GRFs) during a drop landing activity in subjects with chronic ankle instability (CAI)compared to healthy subjects with no history of CAI.Methods:Ten healthy subjects and 10 subjects who had multiple ankle sprains participated in the study as the control and unstable subjects,respectively.The CAI subjects were age,body mass index and gender matched with the control subjects.The arch index and ankle functions of the subjects were measured in a subject screening session.During the biomechanical test session,participants performed five trials of drop landing from 0.6 m,wearing no brace ( NB),ElementTM brace and ASO brace.Simultaneous recording of three-dimensional kinematic (240 Hz)and GRF (1200 Hz) data were performed.Results:The CAI subjects had lower ankle functional survey scores.The arch index and deformity results showed greater arch deformity of ElementTM against a static load than in NB and ASO due to greater initial arch position held by the brace.CAI participants had greater eversion velocity than healthy coutrols.The ASO brace reduced the first peak vertical GRF whereas ElementTM increased 2nd peak vertical GRF.ElementTM brace reduced eversion range of motion (ROM) and peak eversion velocity compared to NB and ASO.In addition,ElementTM reduced dorsiflexion ROM and increased peak plantarflexion moment compared to NB and ASO.Conclusion:Results of static arch measurements and dynamic ankle motion suggest that the restrictions offered by both braces are in part due to more dorsiflexed ankle positions at contact,and higher initial arch position and stiffer ankle for ElementTM.展开更多
The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is no...The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is not desirable that it can be compensated by changing the configuration of BRB braces.In so doing,the configuration in the form of double K(DK)is investigated to achieve more favorable behavior.Also,the required mathematical formulas were proposed to design the system.Comparison of DK system with other conventional BRB showed that the DK system has a better structural performance and is more economical(due to needing less core area)than other conventional BRB.Numerical results indicated that the DK system increases the lateral ultimate strength,lateral nonlinear stiffness,and energy absorption.Besides,the DK configuration reduces the axial forces created in columns in the nonlinear zone.Reducing material demand,created forces in the main frame,and also increasing of nonlinear stiffens by DK improve the structure’s safety.展开更多
To improve wind resistance capacity of cable-braced steel portal frames,a double-braced portal frame was proposed by adding two pre-stressed knee braces to a cable-braced portal frame. To study the reasonable range of...To improve wind resistance capacity of cable-braced steel portal frames,a double-braced portal frame was proposed by adding two pre-stressed knee braces to a cable-braced portal frame. To study the reasonable range of application and method of cable parameter determination for this novel structure,the influences of load condition, span, base constraint, and cable parameters on structural performance were investigated by using the finite element code SAP2000. The results show that pre-stressed knee braces can effectively resist both uplifted and lateral wind loads,so this cablestayed and knee-braced steel portal frame is suitable for large wind.When the vertical load is comparable with the wind load,this novel type of portal frames is suitable for a medium span( 21-48 m). The cables in the cable brace can be determined by structural vertical stiffness,and the cables in the knee brace can be designed as the same as those in the cable-stayed part for the reason that their cross sectional area has only a weak effect on the structure. If no cable fails,the pretension variation of the cable does not affect the stiffness of the portal frame. The cable in the cable brace,working together with the cables in the knee braces,can ease uneven distribution of internal force,and their pretensions can be determined according to actual engineering projects.展开更多
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to ca...Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.展开更多
Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope...Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.展开更多
This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical ...This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant. In order to investigate the seismic performance of this type of structure, several ground motion accelerations with different levels for seismic intensity Ⅷ, based on the Chinese Code for Seismic Design of Buildings, were selected to excite the model. The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity. In addition to the tests, numerical simulations were also conducted and the results showed good agreement with the test results. Thus, the numerical model is shown to be accurate and the beam element can be used to model this structural system.展开更多
A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K...A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China.展开更多
This paper aims to establish an intelligent procedure that combines the observational method with the existing deep learning technique for updating deformation of braced excavation in clay.The gated recurrent unit(GRU...This paper aims to establish an intelligent procedure that combines the observational method with the existing deep learning technique for updating deformation of braced excavation in clay.The gated recurrent unit(GRU) neural network is adopted to formulate the forecast model and learn the potential rules in the field observations using the Nesterov-accelerated Adam(Nadam) algorithm.In the proposed procedure,the GRU-based forecast model is first trained based on the field data of previous and current stages.Then,the field data of the current stage are used as input to predict the deformation response of the next stage via the previously trained GRU-based forecast model.This updating process will loop up till the end of the excavation.This procedure has the advantage of directly predicting the deformation response of unexcavated stages based on the monitoring data.The proposed intelligent procedure is verified on two well-documented cases in terms of accuracy and reliability.The results indicate that both wall deflection and ground settlement are accurately predicted as the excavation proceeds.Furthermore,the advantages of the proposed intelligent procedure compared with the Bayesian/o ptimization updating are illustrated.展开更多
Incremental dynamic analysis and nonlinear static pushover analysis are carried out on a performance-based design to determine the seismic demands and capacities of an elliptic braced moment resisting frame(ELBRF).The...Incremental dynamic analysis and nonlinear static pushover analysis are carried out on a performance-based design to determine the seismic demands and capacities of an elliptic braced moment resisting frame(ELBRF).The objective is to assess ductility,overstrength and response modification factors in a modern steel-braced structural system based on incremental dynamic analysis.This integrated system is connected to a beam and column with an appropriate length while providing enough architectural space to allow for an opening without having the common problems associated with architectural spaces in braced systems.Several different classes of buildings are considered on soil type II.Linear dynamic analysis,nonlinear static pushover analysis and incremental nonlinear dynamic analysis related to 12 records from past earthquakes are carried out using OpenSees software.The factors of ductility,overstrength and response modification are calculated for this system.The values of 9.5 and 6.5 are found and suggested only for the response modification factor for ELBRF systems in allowable stress and ultimate limit state methods,respectively.The fragility curves are plotted for the first time for this type of bracing,which contributes to the assessment of building seismic damage.展开更多
The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper.A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted...The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper.A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth,acceleration amplitude and wall stiffness.Numerical analyses using FLAC 2D were also performed considering one level of bracing.The strut forces,lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results.The study showed that in a post-seismic condition,when other factors were constant,lateral displacement,bending moment,strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration.The study also showed that as wall stiffness decreased,the lateral displacement of the wall and ground surface displacement increased,but the bending moment of the wall and strut forces decreased.The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude,but did not change significantly with wall stiffness.Strut force was the least affected parameter when compared with others under a seismic condition.展开更多
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures...Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.展开更多
Buckling-restrained braced frames(BRBFs) are vulnerable to relatively higher post-earthquake residual drifts under high intensity ground shakings. This is primarily due to the low axial elastic and post-elastic stiffn...Buckling-restrained braced frames(BRBFs) are vulnerable to relatively higher post-earthquake residual drifts under high intensity ground shakings. This is primarily due to the low axial elastic and post-elastic stiffness of bucklingrestrained braces(BRBs) satisfying the design force demand requirements. In the present study, a hybrid buckling restrained bracing system consisting of a short yielding core length BRB component and a conventional buckling-type brace component connected in series has been developed with an aim to increase the axial stiffness of braces. This study is focused on the experimental investigation of six hybrid bucking restrained braces(HBRBs) to investigate their overall behavior, loadresisting capacity, strength-adjustment factors and energy dissipation potential. The main parameters varied are the crosssectional area, the yielding length of core elements as well as the detailing of buckling-restraining system of short yielding core length BRBs. Test results showed that the HBRBs with yielding core length in the range of 30% of work-point to workpoint lengths withstood an axial strain of 6% without any instability and can deliver stable and balanced hysteretic response and excellent energy dissipation under reversed cyclic loading conditions.展开更多
Slamming on bracings of column stabilized units shall be considered as a possible limiting criterion under transit condition based on the requirements in DNV-OS-C103. However, the wave slamming loads under survival co...Slamming on bracings of column stabilized units shall be considered as a possible limiting criterion under transit condition based on the requirements in DNV-OS-C103. However, the wave slamming loads under survival condition were ignored for the strength analysis of the brace structures in many semi-submersible projects. In this paper, a method of strength analysis of brace structure is proposed based on the reconstruction and extrapolation of numerical model. The full-scale mooring system, the wind, wave and current loads can be considered simultaneously. Firstly,the model tests of the semi-submersible platform in wind tunnel and wave tanker have been carried out. Secondly,the numerical models of the platform are reconstructed and extrapolated based on the results of model tests. Then, a nonlinear numerical analysis has been conducted to study the wave slamming load on brace in semi-submersible platform through the reconstructed and extrapolated numerical model. For the randomness of wave load, ten subcases under each condition have been carried out. The value of the 90% Gumble distribution values of the ten subcases are used. Finally, the strength on brace structure has been analyzed considering the wave slamming. The wave slamming loads have been compared between the survival condition and transit condition with the method. The results indicate that wave slamming under survival condition is more critical than that under transit condition.Meanwhile, the wave slamming is significant to the structural strength of the brace. It should be overall considered in the strength analysis of the brace structure.展开更多
A new remedy is proposed in this study to increase the ductility of cross-braced frames to a level comparable with ductile moment frames.The suggested system consists of one or two concentric steel rings installed in ...A new remedy is proposed in this study to increase the ductility of cross-braced frames to a level comparable with ductile moment frames.The suggested system consists of one or two concentric steel rings installed in the cross-braced bay vertically.The steel rings are designed such that they fail in bending sooner than failure of the braces in compression.Then the rings act as seismic fuses with multiple bending plastic hinges.Using nonlinear static analysis,it is shown that the proposed system can be designed to behave like cross-braced frames with regard to stiffness and strength,and like special moment frames with regard to ductility.Seismic design factors for the proposed system are recommended based on nonlinear pushover and cyclic analysis studies.展开更多
Buckling-restrained braces(BRBs)are widely used to improve the seismic performance of buildings.This paper aims to introduce BRBs to suspension bridges and assess the seismic performance of bridges with BRBs.Taking th...Buckling-restrained braces(BRBs)are widely used to improve the seismic performance of buildings.This paper aims to introduce BRBs to suspension bridges and assess the seismic performance of bridges with BRBs.Taking the Dadu River Bridge as a case study,an FEA model of the bridge is established,and different seismic measures(BRBs between the deck and the tower,BRBs at the middle of the span to replace the inclined suspenders to connect the deck and the main cables,fluid viscous dampers(FVDs)between the deck and the tower,the combination of BRBs to replace the inclined suspenders as well as FVDs between the deck and the tower)are applied to the suspension bridge.The influence of the parameters of BRBs on the seismic response of the suspension bridge is studied,and the performance of the bridge with BRBs is compared with that of the bridge with FVDs.The results indicate that the use of BRBs in place of the inclined suspenders is beneficial to reduce the displacement of the deck and limit the shear force and bending moment of the tower.The seismic performance of the suspension bridge with BRBs and FVDs is better than that of the bridge with BRBs or FVDs.Therefore,the application of BRBs is a feasible method to improve the seismic performance of the suspension bridge.展开更多
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
基金The authors are acknowledging the contributions and support from:(a)Department of Civil Engineering&Construction Management,California State University,Northridge,and(b)Star Seismic Inc.
文摘BRBF(buckling restrained braced frame)is a relatively new lateral force resisting system for building structures.BRBFs are used mostly to resist seismic force due to their high ductility after yielding and the ability to absorb higher strain energy.ASCE(American Society of Civil Engineers)first permits the use of BRBFs as a single seismic force-resisting system by quantifying the seismic parameters such as response modification coefficient(R),over-strength factor(Ωo)and deflection amplification factor(Cd)for a structure built with BRBF,in their 2010 code(ASCE 7-10).But it has not been investigated how a structure built with BRBF,which is primarily designed to resist seismic force,and behaves under sudden occurrence of a blast load.This research investigates the performance of a BRBF subjected to blast loading.In other words,this paper focuses on the effect of blast loading on BRBF.The architype for this investigation is a chevron type braced frame.The frame is subjected to a short duration blast load that lasts only 21.7 mili-second(ms).Blast loading effects on the braced frame are assessed by identifying the weakest plane of failure,deformation characteristics and out of plane bending.The research investigates how the properties of the surrounding concrete,especially compressive strength,affect the overall strength of the BRBF on resisting blast loading.It is observed that the compressive strength of the surrounding concrete plays a significant role in reducing the deformation characteristics,both in-plane and out-of-plane.
文摘Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center,Lehigh University to prepare for an upcoming experimental program.The analysis program DRAIN-2DX was used to model a one-bay,four-story prototype BRBF including material and geometric nonlinearities.The buckling- restrained brace(BRB)model incorporates both isotropic and kinematic hardening.Nonlinear static pushover and time- history analyses were performed on the prototype BRBF.Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results.Particular emphasis was placed on global ductility demands and ductility demands on the BRBs.These demands were compared with anticipated ductility capacities.The analysis results,along with results from similar previous studies,are used to evaluate the BRBF design provisions that have been recommended for codification in the United States.The results show that BRB maximum ductility demands can be as high as 20 to 25.These demands significantly exceed those anticipated by the BRBF recommended provisions.Results from the static pushover and time- history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5.Modifications to the testing protocol are recommended.
基金supported in part by DeRoyal Industries, Inc.,Powell,TN,USA
文摘Purpose:The purpose of this study was to examine effects of a sport version of a semi-rigid ankle brace (ElementTM) and a soft ankle brace (ASO) on ankle biomechanics and ground reaction forces (GRFs) during a drop landing activity in subjects with chronic ankle instability (CAI)compared to healthy subjects with no history of CAI.Methods:Ten healthy subjects and 10 subjects who had multiple ankle sprains participated in the study as the control and unstable subjects,respectively.The CAI subjects were age,body mass index and gender matched with the control subjects.The arch index and ankle functions of the subjects were measured in a subject screening session.During the biomechanical test session,participants performed five trials of drop landing from 0.6 m,wearing no brace ( NB),ElementTM brace and ASO brace.Simultaneous recording of three-dimensional kinematic (240 Hz)and GRF (1200 Hz) data were performed.Results:The CAI subjects had lower ankle functional survey scores.The arch index and deformity results showed greater arch deformity of ElementTM against a static load than in NB and ASO due to greater initial arch position held by the brace.CAI participants had greater eversion velocity than healthy coutrols.The ASO brace reduced the first peak vertical GRF whereas ElementTM increased 2nd peak vertical GRF.ElementTM brace reduced eversion range of motion (ROM) and peak eversion velocity compared to NB and ASO.In addition,ElementTM reduced dorsiflexion ROM and increased peak plantarflexion moment compared to NB and ASO.Conclusion:Results of static arch measurements and dynamic ankle motion suggest that the restrictions offered by both braces are in part due to more dorsiflexed ankle positions at contact,and higher initial arch position and stiffer ankle for ElementTM.
文摘The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is not desirable that it can be compensated by changing the configuration of BRB braces.In so doing,the configuration in the form of double K(DK)is investigated to achieve more favorable behavior.Also,the required mathematical formulas were proposed to design the system.Comparison of DK system with other conventional BRB showed that the DK system has a better structural performance and is more economical(due to needing less core area)than other conventional BRB.Numerical results indicated that the DK system increases the lateral ultimate strength,lateral nonlinear stiffness,and energy absorption.Besides,the DK configuration reduces the axial forces created in columns in the nonlinear zone.Reducing material demand,created forces in the main frame,and also increasing of nonlinear stiffens by DK improve the structure’s safety.
基金Fund of Jiangsu Province Key Laboratory of Structure Engineering,China(No.ZD1302)
文摘To improve wind resistance capacity of cable-braced steel portal frames,a double-braced portal frame was proposed by adding two pre-stressed knee braces to a cable-braced portal frame. To study the reasonable range of application and method of cable parameter determination for this novel structure,the influences of load condition, span, base constraint, and cable parameters on structural performance were investigated by using the finite element code SAP2000. The results show that pre-stressed knee braces can effectively resist both uplifted and lateral wind loads,so this cablestayed and knee-braced steel portal frame is suitable for large wind.When the vertical load is comparable with the wind load,this novel type of portal frames is suitable for a medium span( 21-48 m). The cables in the cable brace can be determined by structural vertical stiffness,and the cables in the knee brace can be designed as the same as those in the cable-stayed part for the reason that their cross sectional area has only a weak effect on the structure. If no cable fails,the pretension variation of the cable does not affect the stiffness of the portal frame. The cable in the cable brace,working together with the cables in the knee braces,can ease uneven distribution of internal force,and their pretensions can be determined according to actual engineering projects.
基金Science and Technology Fund of NWPU Under Grant No. M450211 Seed Fund of NWPU Under Grant No. Z200729
文摘Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
基金Science Council in Chinese Taipei Under Grant No.NSC 94-2211-E-035-015
文摘Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.
基金Northeast Electric Power Design Institute of China Under Grant No.K07-T716
文摘This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant. In order to investigate the seismic performance of this type of structure, several ground motion accelerations with different levels for seismic intensity Ⅷ, based on the Chinese Code for Seismic Design of Buildings, were selected to excite the model. The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity. In addition to the tests, numerical simulations were also conducted and the results showed good agreement with the test results. Thus, the numerical model is shown to be accurate and the beam element can be used to model this structural system.
文摘A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China.
基金The financial supports provided by the Research Grants Council(RGC)of Hong Kong Special Administrative Region Government(HKSARG)of China(Grant Nos.15209119 and PolyU R5037-18F)Zhongtian Construction Group Co.Ltd.(Grant No.ZTCG-GDJTYJSJSFW-2020002)。
文摘This paper aims to establish an intelligent procedure that combines the observational method with the existing deep learning technique for updating deformation of braced excavation in clay.The gated recurrent unit(GRU) neural network is adopted to formulate the forecast model and learn the potential rules in the field observations using the Nesterov-accelerated Adam(Nadam) algorithm.In the proposed procedure,the GRU-based forecast model is first trained based on the field data of previous and current stages.Then,the field data of the current stage are used as input to predict the deformation response of the next stage via the previously trained GRU-based forecast model.This updating process will loop up till the end of the excavation.This procedure has the advantage of directly predicting the deformation response of unexcavated stages based on the monitoring data.The proposed intelligent procedure is verified on two well-documented cases in terms of accuracy and reliability.The results indicate that both wall deflection and ground settlement are accurately predicted as the excavation proceeds.Furthermore,the advantages of the proposed intelligent procedure compared with the Bayesian/o ptimization updating are illustrated.
文摘Incremental dynamic analysis and nonlinear static pushover analysis are carried out on a performance-based design to determine the seismic demands and capacities of an elliptic braced moment resisting frame(ELBRF).The objective is to assess ductility,overstrength and response modification factors in a modern steel-braced structural system based on incremental dynamic analysis.This integrated system is connected to a beam and column with an appropriate length while providing enough architectural space to allow for an opening without having the common problems associated with architectural spaces in braced systems.Several different classes of buildings are considered on soil type II.Linear dynamic analysis,nonlinear static pushover analysis and incremental nonlinear dynamic analysis related to 12 records from past earthquakes are carried out using OpenSees software.The factors of ductility,overstrength and response modification are calculated for this system.The values of 9.5 and 6.5 are found and suggested only for the response modification factor for ELBRF systems in allowable stress and ultimate limit state methods,respectively.The fragility curves are plotted for the first time for this type of bracing,which contributes to the assessment of building seismic damage.
文摘The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper.A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth,acceleration amplitude and wall stiffness.Numerical analyses using FLAC 2D were also performed considering one level of bracing.The strut forces,lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results.The study showed that in a post-seismic condition,when other factors were constant,lateral displacement,bending moment,strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration.The study also showed that as wall stiffness decreased,the lateral displacement of the wall and ground surface displacement increased,but the bending moment of the wall and strut forces decreased.The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude,but did not change significantly with wall stiffness.Strut force was the least affected parameter when compared with others under a seismic condition.
基金financially supported by the Natural Science Foundation of Hunan Province(2021JJ30679)。
文摘Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.
基金Department of Science and Technology,Govt. of India for the financial assistance to carry out this experimental work under sponsored project No. IITD/IRD/RP02619。
文摘Buckling-restrained braced frames(BRBFs) are vulnerable to relatively higher post-earthquake residual drifts under high intensity ground shakings. This is primarily due to the low axial elastic and post-elastic stiffness of bucklingrestrained braces(BRBs) satisfying the design force demand requirements. In the present study, a hybrid buckling restrained bracing system consisting of a short yielding core length BRB component and a conventional buckling-type brace component connected in series has been developed with an aim to increase the axial stiffness of braces. This study is focused on the experimental investigation of six hybrid bucking restrained braces(HBRBs) to investigate their overall behavior, loadresisting capacity, strength-adjustment factors and energy dissipation potential. The main parameters varied are the crosssectional area, the yielding length of core elements as well as the detailing of buckling-restraining system of short yielding core length BRBs. Test results showed that the HBRBs with yielding core length in the range of 30% of work-point to workpoint lengths withstood an axial strain of 6% without any instability and can deliver stable and balanced hysteretic response and excellent energy dissipation under reversed cyclic loading conditions.
基金financially supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20170575)University Science Research Project of Jiangsu Province(Grant No.17KJB580005)
文摘Slamming on bracings of column stabilized units shall be considered as a possible limiting criterion under transit condition based on the requirements in DNV-OS-C103. However, the wave slamming loads under survival condition were ignored for the strength analysis of the brace structures in many semi-submersible projects. In this paper, a method of strength analysis of brace structure is proposed based on the reconstruction and extrapolation of numerical model. The full-scale mooring system, the wind, wave and current loads can be considered simultaneously. Firstly,the model tests of the semi-submersible platform in wind tunnel and wave tanker have been carried out. Secondly,the numerical models of the platform are reconstructed and extrapolated based on the results of model tests. Then, a nonlinear numerical analysis has been conducted to study the wave slamming load on brace in semi-submersible platform through the reconstructed and extrapolated numerical model. For the randomness of wave load, ten subcases under each condition have been carried out. The value of the 90% Gumble distribution values of the ten subcases are used. Finally, the strength on brace structure has been analyzed considering the wave slamming. The wave slamming loads have been compared between the survival condition and transit condition with the method. The results indicate that wave slamming under survival condition is more critical than that under transit condition.Meanwhile, the wave slamming is significant to the structural strength of the brace. It should be overall considered in the strength analysis of the brace structure.
文摘A new remedy is proposed in this study to increase the ductility of cross-braced frames to a level comparable with ductile moment frames.The suggested system consists of one or two concentric steel rings installed in the cross-braced bay vertically.The steel rings are designed such that they fail in bending sooner than failure of the braces in compression.Then the rings act as seismic fuses with multiple bending plastic hinges.Using nonlinear static analysis,it is shown that the proposed system can be designed to behave like cross-braced frames with regard to stiffness and strength,and like special moment frames with regard to ductility.Seismic design factors for the proposed system are recommended based on nonlinear pushover and cyclic analysis studies.
基金supported by Scientific Research Start Foundation of Chengdu University of Technology(No.10900-KYQD-06455).
文摘Buckling-restrained braces(BRBs)are widely used to improve the seismic performance of buildings.This paper aims to introduce BRBs to suspension bridges and assess the seismic performance of bridges with BRBs.Taking the Dadu River Bridge as a case study,an FEA model of the bridge is established,and different seismic measures(BRBs between the deck and the tower,BRBs at the middle of the span to replace the inclined suspenders to connect the deck and the main cables,fluid viscous dampers(FVDs)between the deck and the tower,the combination of BRBs to replace the inclined suspenders as well as FVDs between the deck and the tower)are applied to the suspension bridge.The influence of the parameters of BRBs on the seismic response of the suspension bridge is studied,and the performance of the bridge with BRBs is compared with that of the bridge with FVDs.The results indicate that the use of BRBs in place of the inclined suspenders is beneficial to reduce the displacement of the deck and limit the shear force and bending moment of the tower.The seismic performance of the suspension bridge with BRBs and FVDs is better than that of the bridge with BRBs or FVDs.Therefore,the application of BRBs is a feasible method to improve the seismic performance of the suspension bridge.