As computer graphics technology continues to advance,Collision Detection(CD)has emerged as a critical element in fields such as virtual reality,computer graphics,and interactive simulations.CD is indispensable for ens...As computer graphics technology continues to advance,Collision Detection(CD)has emerged as a critical element in fields such as virtual reality,computer graphics,and interactive simulations.CD is indispensable for ensuring the fidelity of physical interactions and the realism of virtual environments,particularly within complex scenarios like virtual assembly,where both high precision and real-time responsiveness are imperative.Despite ongoing developments,current CD techniques often fall short in meeting these stringent requirements,resulting in inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems.To address these limitations,this study introduces a novel algorithm that leverages the capabilities of a Backpropagation Neural Network(BPNN)to optimize the structural composition of the Hybrid Bounding Volume Tree(HBVT).Through this optimization,the research proposes a refined Hybrid Hierarchical Bounding Box(HHBB)framework,which is specifically designed to enhance the computational efficiency and precision of CD processes.The HHBB framework strategically reduces the complexity of collision detection computations,thereby enabling more rapid and accurate responses to collision events.Extensive experimental validation within virtual assembly environments reveals that the proposed algorithm markedly improves the performance of CD,particularly in handling complex models.The optimized HBVT architecture not only accelerates the speed of collision detection but also significantly diminishes error rates,presenting a robust and scalable solution for real-time applications in intricate virtual systems.These findings suggest that the proposed approach offers a substantial advancement in CD technology,with broad implications for its application in virtual reality,computer graphics,and related fields.展开更多
The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks...The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks in assessing safety risks during bridge construction.It introduces the situation,principles,methods,and advantages,as well as the current status and future development directions of backpropagation-related research.展开更多
Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The...Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The traditional flood prediction techniques often encounter challenges in accuracy,timeliness,complexity in handling dynamic flood patterns and leading to substandard flood management strategies.To address these challenges,there is a need for advanced machine learning models that can effectively analyze Internet of Things(IoT)-generated flood data and provide timely and accurate flood predictions.This paper proposes a novel approach-the Adaptive Momentum and Backpropagation(AM-BP)algorithm-for flood prediction and management in IoT networks.The AM-BP model combines the advantages of an adaptive momentum technique with the backpropagation algorithm to enhance flood prediction accuracy and efficiency.Real-world flood data is used for validation,demonstrating the superior performance of the AM-BP algorithm compared to traditional methods.In addition,multilayer high-end computing architecture(MLCA)is used to handle weather data such as rainfall,river water level,soil moisture,etc.The AM-BP’s real-time abilities enable proactive flood management,facilitating timely responses and effective disaster mitigation.Furthermore,the AM-BP algorithm can analyze large and complex datasets,integrating environmental and climatic factors for more accurate flood prediction.The evaluation result shows that the AM-BP algorithm outperforms traditional approaches with an accuracy rate of 96%,96.4%F1-Measure,97%Precision,and 95.9%Recall.The proposed AM-BP model presents a promising solution for flood prediction and management in IoT networks,contributing to more resilient and efficient flood control strategies,and ensuring the safety and well-being of communities at risk of flooding.展开更多
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s...Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering.展开更多
Taking the practical reinforced engineering of a reinforced soil retaining wall as an example, which located in Shandong Province and set on 104 national highway, the stress spread behaviors of the anchor bars in the ...Taking the practical reinforced engineering of a reinforced soil retaining wall as an example, which located in Shandong Province and set on 104 national highway, the stress spread behaviors of the anchor bars in the preforced proceeding were tested. According to the test data, and by use of the update backpropagation (BP) algorithm neural network(NN), the test method and it’s mechanism were studied by the network, then the learning results show the mean square error(MSE) only at the 2 55% level, and the proof testing results show the MSE at 4 38% level (the main aim is to build a NN directly from the in situ test results (the learning phase)). Ipso facto, the learning and adjustment abilities of the NN permit us to develop the test data, subsequently, 36 test data were acquired from the NN. By use of the provide data, as well as the failure situation and carried loading capacity of the retaining wall, finally, the choice the reasonable range interval distance of prestress cement grouting anchor bars were carried out, and the result was 2 m×2 m.展开更多
The model describing the dependence of the mechanical properties on the chemical composition and as deformation techniques of tungsten heavy alloy is established by the method of improved the backpropagation neural ne...The model describing the dependence of the mechanical properties on the chemical composition and as deformation techniques of tungsten heavy alloy is established by the method of improved the backpropagation neural network. The mechanical properties' parameters of tungsten alloy and deformation techniques for tungsten alloy are used as the inputs. The chemical composition and deformation amount of tungsten alloy are used as the outputs. Then they are used for training the neural network. At the same time, the optimal number of the hidden neurons is obtained through the experiential equations, and the varied step learning method is adopted to ensure the stability of the training process. According to the requirements for mechanical properties, the chemical composition and the deformation condition for tungsten heavy alloy can be designed by this artificial neural network system.展开更多
The authors will examine prediction of temperature daily profile using various modifications of BPTT (backpropagation through time algorithm) done by stochastic update in the artificial RCNN (recurrent neural netwo...The authors will examine prediction of temperature daily profile using various modifications of BPTT (backpropagation through time algorithm) done by stochastic update in the artificial RCNN (recurrent neural networks). The general introduction was provided by Salvetti and Wilamowski in 1994 in order to improve probability of convergence and speed of convergence. This update method has also one another quality, its implementation is simple for arbitrary network topology. In stochastic update scenario, constant number of weights/neurons is randomly selected and updated. This is in contrast to classical ordered update, where always all weights/neurons are updated. Stochastic update is suitable to replace classical ordered update without any penalty on implementation complexity and with good chance without penalty on quality of convergence. They have provided first experiments with stochastic modification on BP (backpropagation algorithm) used for artificial FFNN (feed-forward neural network) in detail described in the article "Stochastic Weight Update in the Backpropagation Algorithm on Feed-Forward Neural Networks" presented on the conference IJCNN (International Joint Conference of Neural Networks) 2010 in Barcelona. The BPTT on RCNN uses the history of previous steps stored inside of the NN that can be used for prediction. They will describe exact implementation on the RCNN, and present experiment results on temperature prediction with recurrent neural network topology. The dataset used for temperature prediction consists of the measured temperature from the year 2000 till the end of February 2011. Dataset is split into two groups: training dataset, which is provided to network in learning phase, and testing dataset, which is unknown part of dataset to NN and used to test the ability of NN to predict the temperature and the ability of NN to generalize the model hidden in the temperature profile. The results show promising properties of stochastic weight update with toy-task data, and the higher complexity of the temperature daily profile prediction.展开更多
Objective:Non-small cell lung cancer(NSCLC)patients often experience significant fear of recurrence.To facilitate precise identification and appropriate management of this fear,this study aimed to compare the efficacy...Objective:Non-small cell lung cancer(NSCLC)patients often experience significant fear of recurrence.To facilitate precise identification and appropriate management of this fear,this study aimed to compare the efficacy and accuracy of a Backpropagation Neural Network(BPNN)against logistic regression in modeling fear of cancer recurrence prediction.Methods:Data from 596 NSCLC patients,collected between September 2023 and December 2023 at the Cancer Hospital of the Chinese Academy of Medical Sciences,were analyzed.Nine clinically and statistically significant variables,identified via univariate logistic regression,were inputted into both BPNN and logistic regression models developed on a training set(N=427)and validated on an independent set(N=169).Model performances were assessed using Area Under the Receiver Operating Characteristic(ROC)Curve and Decision Curve Analysis(DCA)in both sets.Results:The BPNN model,incorporating nine selected variables,demonstrated superior performance over logistic regression in the training set(AUC=0.842 vs.0.711,p<0.001)and validation set(0.7 vs.0.675,p<0.001).Conclusion:The BPNN model outperforms logistic regression in accurately predicting fear of cancer recurrence in NSCLC patients,offering an advanced approach for fear assessment.展开更多
The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner dia...The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner diameter of 100 mm,were manufactured and tested.The buckling behavior of CF-CCSs was analyzed by finite element and experiment.Subsequently,the effects of ply angle and length–diameter ratio on buckling load of CF-CCSs were analyzed,and the dataset of the neural network was generated using the finite element method.On this basis,the SSA-BPNN model for predicting buckling load of CF-CCS was established.The results show that the maximum and average errors of the SSA-BPNN to the test data are 6.88%and 2.24%,respectively.The buckling load prediction for CF-CCSs based on SSA-BPNN has satisfactory generalizability and can be used to analyze buckling loads on cylindrical shells of carbon fiber composites.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the ...This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model(DNM)is used to learn the behavior of the system, then, an inverse neural model(INM) is synthesized using a specialized learning technique and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation(BP) algorithm. In this work, the sliding mode-backpropagation(SM-BP) algorithm, presenting some important properties such as robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine the best configuration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the effectiveness of the proposed control strategy.展开更多
We introduce the fractional-order global optimal backpropagation machine,which is trained by an improved fractionalorder steepest descent method(FSDM).This is a fractional-order backpropagation neural network(FBPNN),a...We introduce the fractional-order global optimal backpropagation machine,which is trained by an improved fractionalorder steepest descent method(FSDM).This is a fractional-order backpropagation neural network(FBPNN),a state-of-the-art fractional-order branch of the family of backpropagation neural networks(BPNNs),different from the majority of the previous classic first-order BPNNs which are trained by the traditional first-order steepest descent method.The reverse incremental search of the proposed FBPNN is in the negative directions of the approximate fractional-order partial derivatives of the square error.First,the theoretical concept of an FBPNN trained by an improved FSDM is described mathematically.Then,the mathematical proof of fractional-order global optimal convergence,an assumption of the structure,and fractional-order multi-scale global optimization of the FBPNN are analyzed in detail.Finally,we perform three(types of)experiments to compare the performances of an FBPNN and a classic first-order BPNN,i.e.,example function approximation,fractional-order multi-scale global optimization,and comparison of global search and error fitting abilities with real data.The higher optimal search ability of an FBPNN to determine the global optimal solution is the major advantage that makes the FBPNN superior to a classic first-order BPNN.展开更多
This study aimed to develop a neural network(NN)-based method to predict the long-term mean radiant temperature(MRT)around buildings by using meteorological parameters as training data.The MRT dramatically impacts bui...This study aimed to develop a neural network(NN)-based method to predict the long-term mean radiant temperature(MRT)around buildings by using meteorological parameters as training data.The MRT dramatically impacts building energy consumption and significantly affects outdoor thermal comfort.In NN-based long-term MRT prediction,two main restrictions must be overcome to achieve precise results:first,the difficulty of preparing numerous training datasets;second,the challenge of developing an accurate NN model.To overcome these restrictions,a combination of principal component analysis(PCA)and K-means clustering was employed to reduce the training data while maintaining high prediction accuracy.Second,three widely used NN models(feedforward NN(FFNN),backpropagation NN(BPNN),and BPNN optimized using a genetic algorithm(GA-BPNN))were compared to identify the NN with the best long-term MRT prediction performance.The performances of the tested NNs were evaluated using the mean absolute percentage error(MAPE),which was≤3%in each case.The findings indicate that the training dataset was reduced effectively by the PCA and K-means.Among the three NNs,the GA-BPNN produced the most accurate results,with its MAPE being below 1%.This study will contribute to the development of fast and feasible outdoor thermal environment prediction.展开更多
In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its i...In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits.展开更多
The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of o...The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of oil or gas.Hence,accurately calculating the total organic carbon content in a formation is very important.Present research is focused on precisely calculating the total organic carbon content based on machine learning.At present,many machine learning methods,including backpropagation neural networks,support vector regression,random forests,extreme learning machines,and deep learning,are employed to evaluate the total organic carbon content.However,the principles and perspectives of various machine learning algorithms are quite different.This paper reviews the application of various machine learning algorithms to deal with total organic carbon content evaluation problems.Of various machine learning algorithms used for TOC content predication,two algorithms,the backpropagation neural network and support vector regression are the most commonly used,and the backpropagation neural network is sometimes combined with many other algorithms to achieve better results.Additionally,combining multiple algorithms or using deep learning to increase the number of network layers can further improve the total organic carbon content prediction.The prediction by backpropagation neural network may be better than that by support vector regression;nevertheless,using any type of machine learning algorithm improves the total organic carbon content prediction in a given research block.According to some published literature,the determination coefficient(R^(2))can be increased by up to 0.46 after using machine learning.Deep learning algorithms may be the next breakthrough direction that can significantly improve the prediction of the total organic carbon content.Evaluating the total organic carbon content based on machine learning is of great significance.展开更多
The main purpose of the study is to present a numerical approach to investigate the numerical performances of the fractional 4-D chaotic financial system using a stochastic procedure.The stochastic procedures mainly d...The main purpose of the study is to present a numerical approach to investigate the numerical performances of the fractional 4-D chaotic financial system using a stochastic procedure.The stochastic procedures mainly depend on the combination of the artificial neural network(ANNs)along with the Levenberg-Marquardt Backpropagation(LMB)i.e.,ANNs-LMB technique.The fractional-order term is defined in the Caputo sense and three cases are solved using the proposed technique for different values of the fractional orderα.The values of the fractional order derivatives to solve the fractional 4-D chaotic financial system are used between 0 and 1.The data proportion is applied as 73%,15%,and 12%for training,testing,and certification to solve the chaotic fractional system.The acquired results are verified through the comparison of the reference solution,which indicates the proposed technique is efficient and robust.The 4-D chaotic model is numerically solved by using the ANNs-LMB technique to reduce the mean square error(MSE).To authenticate the exactness,and consistency of the technique,the obtained performances are plotted in the figures of correlation measures,error histograms,and regressions.From these figures,it can be witnessed that the provided technique is effective for solving such models to give some new insight into the physical behavior of the model.展开更多
The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE m...The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE model achieves more precise by using the form of the FO derivative.The investigations through the non-integer and nonlinear mathematical form to define the FO-NEE model are also provided in this study.The composition of the FO-NEEmodel is classified into three classes,execution cost of control,system competence of industrial elements and a new diagnostics technical exclusion cost.The mathematical FO-NEE system is numerically studied by using the artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation method(ANNs-LMBM).Three different cases using the FO derivative have been examined to present the numerical performances of the FO-NEE model.The data is selected to solve the mathematical FO-NEE system is executed as 70%for training and 15%for both testing and certification.The exactness of the proposed ANNs-LMBM is observed through the comparison of the obtained and the Adams-Bashforth-Moulton database results.To ratify the aptitude,validity,constancy,exactness,and competence of the ANNs-LMBM,the numerical replications using the state transitions,regression,correlation,error histograms and mean square error are also described.展开更多
This study aims to solve the nonlinear fractional-order mathematical model(FOMM)by using the normal and dysregulated bone remodeling of themyeloma bone disease(MBD).For themore precise performance of the model,fractio...This study aims to solve the nonlinear fractional-order mathematical model(FOMM)by using the normal and dysregulated bone remodeling of themyeloma bone disease(MBD).For themore precise performance of the model,fractional-order derivatives have been used to solve the disease model numerically.The FOMM is preliminarily designed to focus on the critical interactions between bone resorption or osteoclasts(OC)and bone formation or osteoblasts(OB).The connections of OC and OB are represented by a nonlinear differential system based on the cellular components,which depict stable fluctuation in the usual bone case and unstable fluctuation through the MBD.Untreated myeloma causes by increasing the OC and reducing the osteoblasts,resulting in net bone waste the tumor growth.The solutions of the FOMM will be provided by using the stochastic framework based on the Levenberg-Marquardt backpropagation(LVMBP)neural networks(NN),i.e.,LVMBPNN.The mathematical performances of three variations of the fractional-order derivative based on the nonlinear disease model using the LVMPNN.The static structural performances are 82%for investigation and 9%for both learning and certification.The performances of the LVMBPNN are authenticated by using the results of the Adams-Bashforth-Moulton mechanism.To accomplish the capability,steadiness,accuracy,and ability of the LVMBPNN,the performances of the error histograms(EHs),mean square error(MSE),recurrence,and state transitions(STs)will be provided.展开更多
The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpr...The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation approach(LMBA),i.e.,artificial neural networks-Levenberg-Marquardt backpropagation approach(ANNs-LMBA).The fractional order investigations have been presented to find more realistic results of the mathematical form of the rape and its control model.The differential mathematical form of the nonlinear fractional order mathematical rape and its control model has six classes:susceptible native girls,infected immature girls,susceptible knowledgeable girls,infected knowledgeable girls,susceptible rapist population and infective rapist population.The rape and its control differential system using three different fractional order values is authenticated to perform the correctness of ANNs-LMBA.The data is used to present the rape and its control differential system is designated as 70%for training,14%for authorization and 16%for testing.The obtained performances of the ANNs-LMBA are compared with the dataset of the Adams-Bashforth-Moulton scheme.To substantiate the consistency,aptitude,validity,exactness,and capability of the LMBA neural networks,the obtained numerical values are provided using the state transitions(STs),correlation,regression,mean square error(MSE)and error histograms(EHs).展开更多
The current investigations are presented to solve the fractional order HBV differential infection system(FO-HBV-DIS)with the response of antibody immune using the optimization based stochastic schemes of the Levenberg...The current investigations are presented to solve the fractional order HBV differential infection system(FO-HBV-DIS)with the response of antibody immune using the optimization based stochastic schemes of the Levenberg-Marquardt backpropagation(LMB)neural networks(NNs),i.e.,LMBNNs.The FO-HBV-DIS with the response of antibody immune is categorized into five dynamics,healthy hepatocytes(H),capsids(D),infected hepatocytes(I),free virus(V)and antibodies(W).The investigations for three different FO variants have been tested numerically to solve the nonlinear FO-HBV-DIS.The data magnitudes are implemented 75%for training,10%for certification and 15%for testing to solve the FO-HBV-DIS with the response of antibody immune.The numerical observations are achieved using the stochastic LMBNNs procedures for soling the FO-HBV-DIS with the response of antibody immune and comparison of the results is presented through the database Adams-Bashforth-Moulton approach.To authenticate the validity,competence,consistency,capability and exactness of the LMBNNs,the numerical presentations using the mean square error(MSE),error histograms(EHs),state transitions(STs),correlation and regression are accomplished.展开更多
文摘As computer graphics technology continues to advance,Collision Detection(CD)has emerged as a critical element in fields such as virtual reality,computer graphics,and interactive simulations.CD is indispensable for ensuring the fidelity of physical interactions and the realism of virtual environments,particularly within complex scenarios like virtual assembly,where both high precision and real-time responsiveness are imperative.Despite ongoing developments,current CD techniques often fall short in meeting these stringent requirements,resulting in inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems.To address these limitations,this study introduces a novel algorithm that leverages the capabilities of a Backpropagation Neural Network(BPNN)to optimize the structural composition of the Hybrid Bounding Volume Tree(HBVT).Through this optimization,the research proposes a refined Hybrid Hierarchical Bounding Box(HHBB)framework,which is specifically designed to enhance the computational efficiency and precision of CD processes.The HHBB framework strategically reduces the complexity of collision detection computations,thereby enabling more rapid and accurate responses to collision events.Extensive experimental validation within virtual assembly environments reveals that the proposed algorithm markedly improves the performance of CD,particularly in handling complex models.The optimized HBVT architecture not only accelerates the speed of collision detection but also significantly diminishes error rates,presenting a robust and scalable solution for real-time applications in intricate virtual systems.These findings suggest that the proposed approach offers a substantial advancement in CD technology,with broad implications for its application in virtual reality,computer graphics,and related fields.
基金Key natural science research project of Anhui Province in 2023 research on risk assessment of bridge engineering project based on BP neural network(2023AH052746)。
文摘The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks in assessing safety risks during bridge construction.It introduces the situation,principles,methods,and advantages,as well as the current status and future development directions of backpropagation-related research.
基金supported by the Korea Polar Research Institute(KOPRI)grant funded by the Ministry of Oceans and Fisheries(KOPRI Project No.∗PE22900).
文摘Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.Therefore,timely and accurate decision-making is essential for mitigating flood-related damages.The traditional flood prediction techniques often encounter challenges in accuracy,timeliness,complexity in handling dynamic flood patterns and leading to substandard flood management strategies.To address these challenges,there is a need for advanced machine learning models that can effectively analyze Internet of Things(IoT)-generated flood data and provide timely and accurate flood predictions.This paper proposes a novel approach-the Adaptive Momentum and Backpropagation(AM-BP)algorithm-for flood prediction and management in IoT networks.The AM-BP model combines the advantages of an adaptive momentum technique with the backpropagation algorithm to enhance flood prediction accuracy and efficiency.Real-world flood data is used for validation,demonstrating the superior performance of the AM-BP algorithm compared to traditional methods.In addition,multilayer high-end computing architecture(MLCA)is used to handle weather data such as rainfall,river water level,soil moisture,etc.The AM-BP’s real-time abilities enable proactive flood management,facilitating timely responses and effective disaster mitigation.Furthermore,the AM-BP algorithm can analyze large and complex datasets,integrating environmental and climatic factors for more accurate flood prediction.The evaluation result shows that the AM-BP algorithm outperforms traditional approaches with an accuracy rate of 96%,96.4%F1-Measure,97%Precision,and 95.9%Recall.The proposed AM-BP model presents a promising solution for flood prediction and management in IoT networks,contributing to more resilient and efficient flood control strategies,and ensuring the safety and well-being of communities at risk of flooding.
文摘Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering.
文摘Taking the practical reinforced engineering of a reinforced soil retaining wall as an example, which located in Shandong Province and set on 104 national highway, the stress spread behaviors of the anchor bars in the preforced proceeding were tested. According to the test data, and by use of the update backpropagation (BP) algorithm neural network(NN), the test method and it’s mechanism were studied by the network, then the learning results show the mean square error(MSE) only at the 2 55% level, and the proof testing results show the MSE at 4 38% level (the main aim is to build a NN directly from the in situ test results (the learning phase)). Ipso facto, the learning and adjustment abilities of the NN permit us to develop the test data, subsequently, 36 test data were acquired from the NN. By use of the provide data, as well as the failure situation and carried loading capacity of the retaining wall, finally, the choice the reasonable range interval distance of prestress cement grouting anchor bars were carried out, and the result was 2 m×2 m.
文摘The model describing the dependence of the mechanical properties on the chemical composition and as deformation techniques of tungsten heavy alloy is established by the method of improved the backpropagation neural network. The mechanical properties' parameters of tungsten alloy and deformation techniques for tungsten alloy are used as the inputs. The chemical composition and deformation amount of tungsten alloy are used as the outputs. Then they are used for training the neural network. At the same time, the optimal number of the hidden neurons is obtained through the experiential equations, and the varied step learning method is adopted to ensure the stability of the training process. According to the requirements for mechanical properties, the chemical composition and the deformation condition for tungsten heavy alloy can be designed by this artificial neural network system.
文摘The authors will examine prediction of temperature daily profile using various modifications of BPTT (backpropagation through time algorithm) done by stochastic update in the artificial RCNN (recurrent neural networks). The general introduction was provided by Salvetti and Wilamowski in 1994 in order to improve probability of convergence and speed of convergence. This update method has also one another quality, its implementation is simple for arbitrary network topology. In stochastic update scenario, constant number of weights/neurons is randomly selected and updated. This is in contrast to classical ordered update, where always all weights/neurons are updated. Stochastic update is suitable to replace classical ordered update without any penalty on implementation complexity and with good chance without penalty on quality of convergence. They have provided first experiments with stochastic modification on BP (backpropagation algorithm) used for artificial FFNN (feed-forward neural network) in detail described in the article "Stochastic Weight Update in the Backpropagation Algorithm on Feed-Forward Neural Networks" presented on the conference IJCNN (International Joint Conference of Neural Networks) 2010 in Barcelona. The BPTT on RCNN uses the history of previous steps stored inside of the NN that can be used for prediction. They will describe exact implementation on the RCNN, and present experiment results on temperature prediction with recurrent neural network topology. The dataset used for temperature prediction consists of the measured temperature from the year 2000 till the end of February 2011. Dataset is split into two groups: training dataset, which is provided to network in learning phase, and testing dataset, which is unknown part of dataset to NN and used to test the ability of NN to predict the temperature and the ability of NN to generalize the model hidden in the temperature profile. The results show promising properties of stochastic weight update with toy-task data, and the higher complexity of the temperature daily profile prediction.
基金Supported by Beijing Hope Run Special Fund of Cancer Foundation of China(LC2022C05).
文摘Objective:Non-small cell lung cancer(NSCLC)patients often experience significant fear of recurrence.To facilitate precise identification and appropriate management of this fear,this study aimed to compare the efficacy and accuracy of a Backpropagation Neural Network(BPNN)against logistic regression in modeling fear of cancer recurrence prediction.Methods:Data from 596 NSCLC patients,collected between September 2023 and December 2023 at the Cancer Hospital of the Chinese Academy of Medical Sciences,were analyzed.Nine clinically and statistically significant variables,identified via univariate logistic regression,were inputted into both BPNN and logistic regression models developed on a training set(N=427)and validated on an independent set(N=169).Model performances were assessed using Area Under the Receiver Operating Characteristic(ROC)Curve and Decision Curve Analysis(DCA)in both sets.Results:The BPNN model,incorporating nine selected variables,demonstrated superior performance over logistic regression in the training set(AUC=0.842 vs.0.711,p<0.001)and validation set(0.7 vs.0.675,p<0.001).Conclusion:The BPNN model outperforms logistic regression in accurately predicting fear of cancer recurrence in NSCLC patients,offering an advanced approach for fear assessment.
基金supported by the National Natural Science Foundation of China(Grant No.52271277)the Natural Science Foundation of Jiangsu Province(Grant.No.BK20211343)+1 种基金the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(Grant.No.GKZD010081)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant.No.SJCX22_1906).
文摘The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner diameter of 100 mm,were manufactured and tested.The buckling behavior of CF-CCSs was analyzed by finite element and experiment.Subsequently,the effects of ply angle and length–diameter ratio on buckling load of CF-CCSs were analyzed,and the dataset of the neural network was generated using the finite element method.On this basis,the SSA-BPNN model for predicting buckling load of CF-CCS was established.The results show that the maximum and average errors of the SSA-BPNN to the test data are 6.88%and 2.24%,respectively.The buckling load prediction for CF-CCSs based on SSA-BPNN has satisfactory generalizability and can be used to analyze buckling loads on cylindrical shells of carbon fiber composites.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.
文摘This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model(DNM)is used to learn the behavior of the system, then, an inverse neural model(INM) is synthesized using a specialized learning technique and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation(BP) algorithm. In this work, the sliding mode-backpropagation(SM-BP) algorithm, presenting some important properties such as robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine the best configuration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the effectiveness of the proposed control strategy.
基金Project supported by the National Key Research and Development Program of China(No.2018YFC0830300)the National Natural Science Foundation of China(No.61571312)。
文摘We introduce the fractional-order global optimal backpropagation machine,which is trained by an improved fractionalorder steepest descent method(FSDM).This is a fractional-order backpropagation neural network(FBPNN),a state-of-the-art fractional-order branch of the family of backpropagation neural networks(BPNNs),different from the majority of the previous classic first-order BPNNs which are trained by the traditional first-order steepest descent method.The reverse incremental search of the proposed FBPNN is in the negative directions of the approximate fractional-order partial derivatives of the square error.First,the theoretical concept of an FBPNN trained by an improved FSDM is described mathematically.Then,the mathematical proof of fractional-order global optimal convergence,an assumption of the structure,and fractional-order multi-scale global optimization of the FBPNN are analyzed in detail.Finally,we perform three(types of)experiments to compare the performances of an FBPNN and a classic first-order BPNN,i.e.,example function approximation,fractional-order multi-scale global optimization,and comparison of global search and error fitting abilities with real data.The higher optimal search ability of an FBPNN to determine the global optimal solution is the major advantage that makes the FBPNN superior to a classic first-order BPNN.
基金This study was supported by a Grant-in-Aid for Challenging Research(Exploratory)(No.19K22004)the China Scholarship Council(No.201708430100).
文摘This study aimed to develop a neural network(NN)-based method to predict the long-term mean radiant temperature(MRT)around buildings by using meteorological parameters as training data.The MRT dramatically impacts building energy consumption and significantly affects outdoor thermal comfort.In NN-based long-term MRT prediction,two main restrictions must be overcome to achieve precise results:first,the difficulty of preparing numerous training datasets;second,the challenge of developing an accurate NN model.To overcome these restrictions,a combination of principal component analysis(PCA)and K-means clustering was employed to reduce the training data while maintaining high prediction accuracy.Second,three widely used NN models(feedforward NN(FFNN),backpropagation NN(BPNN),and BPNN optimized using a genetic algorithm(GA-BPNN))were compared to identify the NN with the best long-term MRT prediction performance.The performances of the tested NNs were evaluated using the mean absolute percentage error(MAPE),which was≤3%in each case.The findings indicate that the training dataset was reduced effectively by the PCA and K-means.Among the three NNs,the GA-BPNN produced the most accurate results,with its MAPE being below 1%.This study will contribute to the development of fast and feasible outdoor thermal environment prediction.
基金supported by the 2022 Project for Improving the Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities(Grant No.2022KY0209).
文摘In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits.
基金This project was funded by the Open Fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources,the Ministry of Education(No.K2021-03)National Natural Science Foundation of China(No.42106213)+2 种基金the Hainan Provincial Natural Science Foundation of China(No.421QN281)the China Postdoctoral Science Foundation(Nos.2021M690161 and 2021T140691)the Postdoctorate Funded Project in Hainan Province.
文摘The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of oil or gas.Hence,accurately calculating the total organic carbon content in a formation is very important.Present research is focused on precisely calculating the total organic carbon content based on machine learning.At present,many machine learning methods,including backpropagation neural networks,support vector regression,random forests,extreme learning machines,and deep learning,are employed to evaluate the total organic carbon content.However,the principles and perspectives of various machine learning algorithms are quite different.This paper reviews the application of various machine learning algorithms to deal with total organic carbon content evaluation problems.Of various machine learning algorithms used for TOC content predication,two algorithms,the backpropagation neural network and support vector regression are the most commonly used,and the backpropagation neural network is sometimes combined with many other algorithms to achieve better results.Additionally,combining multiple algorithms or using deep learning to increase the number of network layers can further improve the total organic carbon content prediction.The prediction by backpropagation neural network may be better than that by support vector regression;nevertheless,using any type of machine learning algorithm improves the total organic carbon content prediction in a given research block.According to some published literature,the determination coefficient(R^(2))can be increased by up to 0.46 after using machine learning.Deep learning algorithms may be the next breakthrough direction that can significantly improve the prediction of the total organic carbon content.Evaluating the total organic carbon content based on machine learning is of great significance.
基金National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291.
文摘The main purpose of the study is to present a numerical approach to investigate the numerical performances of the fractional 4-D chaotic financial system using a stochastic procedure.The stochastic procedures mainly depend on the combination of the artificial neural network(ANNs)along with the Levenberg-Marquardt Backpropagation(LMB)i.e.,ANNs-LMB technique.The fractional-order term is defined in the Caputo sense and three cases are solved using the proposed technique for different values of the fractional orderα.The values of the fractional order derivatives to solve the fractional 4-D chaotic financial system are used between 0 and 1.The data proportion is applied as 73%,15%,and 12%for training,testing,and certification to solve the chaotic fractional system.The acquired results are verified through the comparison of the reference solution,which indicates the proposed technique is efficient and robust.The 4-D chaotic model is numerically solved by using the ANNs-LMB technique to reduce the mean square error(MSE).To authenticate the exactness,and consistency of the technique,the obtained performances are plotted in the figures of correlation measures,error histograms,and regressions.From these figures,it can be witnessed that the provided technique is effective for solving such models to give some new insight into the physical behavior of the model.
基金funded by National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291.
文摘The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE model achieves more precise by using the form of the FO derivative.The investigations through the non-integer and nonlinear mathematical form to define the FO-NEE model are also provided in this study.The composition of the FO-NEEmodel is classified into three classes,execution cost of control,system competence of industrial elements and a new diagnostics technical exclusion cost.The mathematical FO-NEE system is numerically studied by using the artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation method(ANNs-LMBM).Three different cases using the FO derivative have been examined to present the numerical performances of the FO-NEE model.The data is selected to solve the mathematical FO-NEE system is executed as 70%for training and 15%for both testing and certification.The exactness of the proposed ANNs-LMBM is observed through the comparison of the obtained and the Adams-Bashforth-Moulton database results.To ratify the aptitude,validity,constancy,exactness,and competence of the ANNs-LMBM,the numerical replications using the state transitions,regression,correlation,error histograms and mean square error are also described.
基金Thailand Science Research and Innovation(TSRI).Contract No.FRB650059/NMA/10the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(grant number B05F640092).
文摘This study aims to solve the nonlinear fractional-order mathematical model(FOMM)by using the normal and dysregulated bone remodeling of themyeloma bone disease(MBD).For themore precise performance of the model,fractional-order derivatives have been used to solve the disease model numerically.The FOMM is preliminarily designed to focus on the critical interactions between bone resorption or osteoclasts(OC)and bone formation or osteoblasts(OB).The connections of OC and OB are represented by a nonlinear differential system based on the cellular components,which depict stable fluctuation in the usual bone case and unstable fluctuation through the MBD.Untreated myeloma causes by increasing the OC and reducing the osteoblasts,resulting in net bone waste the tumor growth.The solutions of the FOMM will be provided by using the stochastic framework based on the Levenberg-Marquardt backpropagation(LVMBP)neural networks(NN),i.e.,LVMBPNN.The mathematical performances of three variations of the fractional-order derivative based on the nonlinear disease model using the LVMPNN.The static structural performances are 82%for investigation and 9%for both learning and certification.The performances of the LVMBPNN are authenticated by using the results of the Adams-Bashforth-Moulton mechanism.To accomplish the capability,steadiness,accuracy,and ability of the LVMBPNN,the performances of the error histograms(EHs),mean square error(MSE),recurrence,and state transitions(STs)will be provided.
文摘The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation approach(LMBA),i.e.,artificial neural networks-Levenberg-Marquardt backpropagation approach(ANNs-LMBA).The fractional order investigations have been presented to find more realistic results of the mathematical form of the rape and its control model.The differential mathematical form of the nonlinear fractional order mathematical rape and its control model has six classes:susceptible native girls,infected immature girls,susceptible knowledgeable girls,infected knowledgeable girls,susceptible rapist population and infective rapist population.The rape and its control differential system using three different fractional order values is authenticated to perform the correctness of ANNs-LMBA.The data is used to present the rape and its control differential system is designated as 70%for training,14%for authorization and 16%for testing.The obtained performances of the ANNs-LMBA are compared with the dataset of the Adams-Bashforth-Moulton scheme.To substantiate the consistency,aptitude,validity,exactness,and capability of the LMBA neural networks,the obtained numerical values are provided using the state transitions(STs),correlation,regression,mean square error(MSE)and error histograms(EHs).
基金the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(grant number B05F640092).
文摘The current investigations are presented to solve the fractional order HBV differential infection system(FO-HBV-DIS)with the response of antibody immune using the optimization based stochastic schemes of the Levenberg-Marquardt backpropagation(LMB)neural networks(NNs),i.e.,LMBNNs.The FO-HBV-DIS with the response of antibody immune is categorized into five dynamics,healthy hepatocytes(H),capsids(D),infected hepatocytes(I),free virus(V)and antibodies(W).The investigations for three different FO variants have been tested numerically to solve the nonlinear FO-HBV-DIS.The data magnitudes are implemented 75%for training,10%for certification and 15%for testing to solve the FO-HBV-DIS with the response of antibody immune.The numerical observations are achieved using the stochastic LMBNNs procedures for soling the FO-HBV-DIS with the response of antibody immune and comparison of the results is presented through the database Adams-Bashforth-Moulton approach.To authenticate the validity,competence,consistency,capability and exactness of the LMBNNs,the numerical presentations using the mean square error(MSE),error histograms(EHs),state transitions(STs),correlation and regression are accomplished.