As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as ...As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result ofthe disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remotesensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutionsoffer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapiddispersal under suitable conditions, making it difficult to track the disease at a regional scale with a single sensorin practice. Therefore, it is necessary to identify or construct features that are effective across different sensors formonitoring RBLB. To achieve this goal, the spectral response of RBLB was first analyzed based on the canopyhyperspectral data. Using the relative spectral response (RSR) functions of four representative satellite or UAVsensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M) and the hyperspectral data, the corresponding broad-bandspectral data was simulated. According to a thorough band combination and sensitivity analysis, two novel spectralindices for monitoring RBLB that can be effective across multiple sensors (i.e., RBBRI and RBBDI) weredeveloped. An optimal feature set that includes the two novel indices and a classical vegetation index was formed.The capability of such a feature set in monitoring RBLB was assessed via FLDA and SVM algorithms. The resultdemonstrated that both constructed novel indices exhibited high sensitivity to the disease across multiple sensors.Meanwhile, the feature set yielded an overall accuracy above 90% for all sensors, which indicates its cross-sensorgenerality in monitoring RBLB. The outcome of this research permits disease monitoring with different remotesensing data over a large scale.展开更多
Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant ...Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant protection mechanism against bacterial leaf blight(BLB)disease caused by Xanthomonas oryzae pv.oryzae(Xoo).Results indicated that the use of SA-Ricemate as a foliar spray at concentrations of more than 100 mg L^(-1)can reduce the severity of BLB disease by 71%.SA-Ricemate treatment also increased the hydrogen peroxide(H_(2)O_(2))content of rice leaf tissues over untreated samples by 39–61%.Malondialdehyde(MDA)in rice leaves treated with SA-Ricemate also showed an increase of 50–65%when comparing to non-treated samples.The differential development of these defense compounds was faster and distinct when the SA-Ricemate-treated rice was infected with Xoo,indicating plant-induced resistance.Besides,SA-Ricemate elicitor at a concentration of 50–250 mg L^(-1)was correlated with a substantial increase in the accumulation of total chlorophyll content at 2.53–2.73 mg g^(-1)of fresh weight which suggests that plant growth is activated by SA-Ricemate.The catalase-and aldehyde dehydrogenase-binding sites were searched for using the CASTp server,and the findings were compared to the template.Chemsketch was used to design and optimize SA,which was then docked to the catalase and aldehyde dehydrogenase-binding domains of the enzymes using the GOLD 3.0.1 Software.SA is shown in several docked conformations with the enzymes catalase and aldehyde dehydrogenase.All three catalase amino acids(GLN7,VAL27,and GLU38)were discovered to be involved in the creation of a strong hydrogen bond with SA when SA was present.In this mechanism,the aldehyde dehydrogenase amino acids LYS5,HIS6,and ASP2 were all implicated,and these amino acids created strong hydrogen bonds with SA.In field conditions,SA-Ricemate significantly reduced disease severity by 78%and the total grain yield was significantly increased which was an increase of plant height,tiller per hill,and panicle in three field trials during Aug–Nov 2017 and 2018.Therefore,SA-Ricemate can be used as an alternative elicitor on replacing harmful pesticides to control BLB disease with a high potential of increasing rice defenses,growth,and yield components.展开更多
Through recurrent backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and Rl176 carrying Xa-21, a gene having broad-spectrum resistance to rice bacterial leaf blight, were ...Through recurrent backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and Rl176 carrying Xa-21, a gene having broad-spectrum resistance to rice bacterial leaf blight, were selected. By crossing the two lines to CMS line Zhong 9A, two new hybrid rice combinations, Zhongyou 6 and Zhongyou 1176 were developed. The hybrids showed high resistance to diseases, good grain quality and high yielding potential in national and provincial adaptability and yield trials.展开更多
Xanthomonas oryzae pv.oryzae(Xoo)is a widespread pathogen causing bacterial leaf blight(BLB)disease,devastating rice productivity in many cultivated areas of Thailand.A specific and simple method for Xoo detection is ...Xanthomonas oryzae pv.oryzae(Xoo)is a widespread pathogen causing bacterial leaf blight(BLB)disease,devastating rice productivity in many cultivated areas of Thailand.A specific and simple method for Xoo detection is required to improve surveillance of disease transmission and outbreak.This study developed a recombinase polymerase amplification(RPA)assay assisted with CRISPR-cas12a assay(RAC)for Xoo detection from bacterial cell suspension of infected rice samples without DNA extraction.The efficiency of the RAC system for Xoo detection using either Xoo80 or Xoo4009 locus was optimized to amplify and determine the sensitivity and specificity using a Xoo DNA template from bacterial cell suspension of infected rice samples without DNA extraction.The RAC system using the Xoo4009 locus gave a higher specificity than Xoo80 locus,because only Xoo species was amplified positive RPA product with fluorescence signal by cas12a digestion,which indicated no cross reactivity.Optimal RAC using the Xoo4009 locus enabled diagnosis of Xoo presence from both plant extracted samples of Xoo artificially inoculated rice leaves within 3 d post-inoculation without symptomatic BLB appearance,and Xoo naturally infected rice.Findings exhibited that RAC using the Xoo4009 locus offered sensitivity,specificity and simplicity for Xoo detection,with low intensities of Xoo-DNA(1×10^(3) copies/μL)and Xoo-cell(2.5×10^(3) cfu/mL).This developed RAC system showed significantly potential for Xoo detection at point-of-care application for early signs of BLB disease outbreak in rice fields.展开更多
The interaction between rice host and its pathogen Xanthomonas oryzae pv. oryzae (Xoo) at cellular level was studied by using a resistant somaclonal mutant HX-3 and its susceptable donor Minghui 63. After inoculation ...The interaction between rice host and its pathogen Xanthomonas oryzae pv. oryzae (Xoo) at cellular level was studied by using a resistant somaclonal mutant HX-3 and its susceptable donor Minghui 63. After inoculation with Xoo strain Zhe 173 (Chinese pathotype Ⅳ), the activity of superoxide dismutase (SOD) and peroxidase (POD) in the callus of Minghui 63 was increased dramatically, and the active oxygen(O2 ) was produced at a higher rate; Meanwhile, the callus grew slowly with the reduction of protein content Compared to the activity of SOD and POD, the production rate of Oa and the fresh weight in HX-3 callus varied little after the inoculation It could be proposed that there were great differences between the resistance of HX-3 and Mighui 63 at cellular level. There was no difference detected concerning resistance to bacterial leaf blight in HX-3 between the plant and the callus.展开更多
Xanthomonas spp. cause severe bacterial diseases. However, effective strategies for prevention and management of these diseases are scarce. Thus, it is necessary to improve the efficiency of control of diseases caused...Xanthomonas spp. cause severe bacterial diseases. However, effective strategies for prevention and management of these diseases are scarce. Thus, it is necessary to improve the efficiency of control of diseases caused by Xanthomonas. In this study, Xanthomonas oryzae pv. oryzae(Xoo), which causes rice bacterial leaf blight, has been studied as a representative. A transposon insertion library of Xoo, comprising approximately 200,000 individual insertion mutants, was generated. Transposon sequencing data indicated that the mariner C9 transposase mapped at 35.7–36.4% of all potential insertion sites, revealing 491 essential genes required for the growth of Xoo in rich media. The results show that, compared to the functions of essential genes of other bacteria, the functions of some essential genes of Xoo are unknown, 25 genes might be dangerous for the Xanthomonas group, and 3 are specific to Xanthomonas. High-priority candidates for developing broad-spectrum, Xanthomonas-specific, and environment-friendly bactericides were identified in this study. In addition, this study revealed the possible targets of dioctyldiethylenetriamine using surface plasmon resonance(SPR) in combination with high performance liquid chromatography–mass spectrometry(HPLC–MS). The study also provided references for the research of some certain bactericides with unknown anti-bacterial mode of action. In conclusion, this study urged a better understanding of Xanthomonas,provided meaningful data for the management of bacterial leaf blight, and disclosed selected targets of a novel bactericide.展开更多
In the agricultural industry,rice infections have resulted in significant productivity and economic losses.The infections must be recognized early on to regulate and mitigate the effects of the attacks.Early diagnosis...In the agricultural industry,rice infections have resulted in significant productivity and economic losses.The infections must be recognized early on to regulate and mitigate the effects of the attacks.Early diagnosis of disease severity effects or incidence can preserve production from quantitative and qualitative losses,reduce pesticide use,and boost ta country’s economy.Assessing the health of a rice plant through its leaves is usually done as a manual ocular exercise.In this manuscript,three rice plant diseases:Bacterial leaf blight,Brown spot,and Leaf smut,were identified using the Alexnet Model.Our research shows that any reduction in rice plants will have a significant beneficial impact on alleviating global food hunger by increasing supply,lowering prices,and reducing production's environmental impact that affects the economy of any country.Farmers would be able to get more exact and faster results with this technology,allowing them to administer the most acceptable treatment available.By Using Alex Net,the proposed approach achieved a 99.0%accuracy rate for diagnosing rice leaves disease.展开更多
Prevalence of chronic noncommunicable diseases(NCDs)is rapidly increasing and has become a global problem in modern day.Over consumption of simple,processed carbohydrate foods is considered one of the main causes of N...Prevalence of chronic noncommunicable diseases(NCDs)is rapidly increasing and has become a global problem in modern day.Over consumption of simple,processed carbohydrate foods is considered one of the main causes of NCD in young and elderly populations.Whole grain rice is an important source of a complex carbohydrate,dietary fiber,enriched with vitamins,minerals,and antioxidants.However,palatability of brown rice is the key success factor among white-rice-addicted communities.In the initial phase,we successfully breed rice strains with aromatic,soft-whole grain,white rice contains high grain-Fe/Zn density and intermediate glycemic index(GI).The most successful variety was uniquely soft-textured black purple rice named Riceberry,depicting rice enriched with blueberry nutritional characteristics.Product development for fiber-rich,high antioxidant has been extremely active from academia,real sectors,and SMEs.In total,39 patent applications(18 granted patents),12 international publications,and 18,700 Youtubes related to Riceberry.From 2017,Riceberry has become the most popular choice for product development surpassing Thai Hommali Rice.More than 200 food and non-food products were commercialized as dairy replacement,side dishes,meals,hot beverages,bakery,and breakfast cereals.In the second phase,we successfully breed low GI rice strains named Pink+4 equipped with farmers’preferred resistance to flash flooding,bacterial leaf blight,leaf blast,and devastating brown planthopper adapted to organic rice production.Innovative products combined of low GI rice flour with purple Riceberry have been the next trend for functional ingredients and foods.These healthy rice products have high potential globally as healthy foods,gluten-free,fiber-rich,complex carbohydrate,and nutrient-dense from sustainable organic farming.展开更多
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28010500)National Natural Science Foundation of China(Grant Nos.42371385,42071420)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002).
文摘As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result ofthe disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remotesensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutionsoffer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapiddispersal under suitable conditions, making it difficult to track the disease at a regional scale with a single sensorin practice. Therefore, it is necessary to identify or construct features that are effective across different sensors formonitoring RBLB. To achieve this goal, the spectral response of RBLB was first analyzed based on the canopyhyperspectral data. Using the relative spectral response (RSR) functions of four representative satellite or UAVsensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M) and the hyperspectral data, the corresponding broad-bandspectral data was simulated. According to a thorough band combination and sensitivity analysis, two novel spectralindices for monitoring RBLB that can be effective across multiple sensors (i.e., RBBRI and RBBDI) weredeveloped. An optimal feature set that includes the two novel indices and a classical vegetation index was formed.The capability of such a feature set in monitoring RBLB was assessed via FLDA and SVM algorithms. The resultdemonstrated that both constructed novel indices exhibited high sensitivity to the disease across multiple sensors.Meanwhile, the feature set yielded an overall accuracy above 90% for all sensors, which indicates its cross-sensorgenerality in monitoring RBLB. The outcome of this research permits disease monitoring with different remotesensing data over a large scale.
基金supported by the Suranaree University of Technology,Thailand,the Thailand Science Research and Innovation(TSRI)the National Science,Research and Innovation Fund,Thailand(NSRF)(90464).
文摘Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant protection mechanism against bacterial leaf blight(BLB)disease caused by Xanthomonas oryzae pv.oryzae(Xoo).Results indicated that the use of SA-Ricemate as a foliar spray at concentrations of more than 100 mg L^(-1)can reduce the severity of BLB disease by 71%.SA-Ricemate treatment also increased the hydrogen peroxide(H_(2)O_(2))content of rice leaf tissues over untreated samples by 39–61%.Malondialdehyde(MDA)in rice leaves treated with SA-Ricemate also showed an increase of 50–65%when comparing to non-treated samples.The differential development of these defense compounds was faster and distinct when the SA-Ricemate-treated rice was infected with Xoo,indicating plant-induced resistance.Besides,SA-Ricemate elicitor at a concentration of 50–250 mg L^(-1)was correlated with a substantial increase in the accumulation of total chlorophyll content at 2.53–2.73 mg g^(-1)of fresh weight which suggests that plant growth is activated by SA-Ricemate.The catalase-and aldehyde dehydrogenase-binding sites were searched for using the CASTp server,and the findings were compared to the template.Chemsketch was used to design and optimize SA,which was then docked to the catalase and aldehyde dehydrogenase-binding domains of the enzymes using the GOLD 3.0.1 Software.SA is shown in several docked conformations with the enzymes catalase and aldehyde dehydrogenase.All three catalase amino acids(GLN7,VAL27,and GLU38)were discovered to be involved in the creation of a strong hydrogen bond with SA when SA was present.In this mechanism,the aldehyde dehydrogenase amino acids LYS5,HIS6,and ASP2 were all implicated,and these amino acids created strong hydrogen bonds with SA.In field conditions,SA-Ricemate significantly reduced disease severity by 78%and the total grain yield was significantly increased which was an increase of plant height,tiller per hill,and panicle in three field trials during Aug–Nov 2017 and 2018.Therefore,SA-Ricemate can be used as an alternative elicitor on replacing harmful pesticides to control BLB disease with a high potential of increasing rice defenses,growth,and yield components.
文摘Through recurrent backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and Rl176 carrying Xa-21, a gene having broad-spectrum resistance to rice bacterial leaf blight, were selected. By crossing the two lines to CMS line Zhong 9A, two new hybrid rice combinations, Zhongyou 6 and Zhongyou 1176 were developed. The hybrids showed high resistance to diseases, good grain quality and high yielding potential in national and provincial adaptability and yield trials.
基金the Agricultural Research Development Agency(Public Organization),Thailand(Project No.PRP6205031190).
文摘Xanthomonas oryzae pv.oryzae(Xoo)is a widespread pathogen causing bacterial leaf blight(BLB)disease,devastating rice productivity in many cultivated areas of Thailand.A specific and simple method for Xoo detection is required to improve surveillance of disease transmission and outbreak.This study developed a recombinase polymerase amplification(RPA)assay assisted with CRISPR-cas12a assay(RAC)for Xoo detection from bacterial cell suspension of infected rice samples without DNA extraction.The efficiency of the RAC system for Xoo detection using either Xoo80 or Xoo4009 locus was optimized to amplify and determine the sensitivity and specificity using a Xoo DNA template from bacterial cell suspension of infected rice samples without DNA extraction.The RAC system using the Xoo4009 locus gave a higher specificity than Xoo80 locus,because only Xoo species was amplified positive RPA product with fluorescence signal by cas12a digestion,which indicated no cross reactivity.Optimal RAC using the Xoo4009 locus enabled diagnosis of Xoo presence from both plant extracted samples of Xoo artificially inoculated rice leaves within 3 d post-inoculation without symptomatic BLB appearance,and Xoo naturally infected rice.Findings exhibited that RAC using the Xoo4009 locus offered sensitivity,specificity and simplicity for Xoo detection,with low intensities of Xoo-DNA(1×10^(3) copies/μL)and Xoo-cell(2.5×10^(3) cfu/mL).This developed RAC system showed significantly potential for Xoo detection at point-of-care application for early signs of BLB disease outbreak in rice fields.
文摘The interaction between rice host and its pathogen Xanthomonas oryzae pv. oryzae (Xoo) at cellular level was studied by using a resistant somaclonal mutant HX-3 and its susceptable donor Minghui 63. After inoculation with Xoo strain Zhe 173 (Chinese pathotype Ⅳ), the activity of superoxide dismutase (SOD) and peroxidase (POD) in the callus of Minghui 63 was increased dramatically, and the active oxygen(O2 ) was produced at a higher rate; Meanwhile, the callus grew slowly with the reduction of protein content Compared to the activity of SOD and POD, the production rate of Oa and the fresh weight in HX-3 callus varied little after the inoculation It could be proposed that there were great differences between the resistance of HX-3 and Mighui 63 at cellular level. There was no difference detected concerning resistance to bacterial leaf blight in HX-3 between the plant and the callus.
基金This study was supported by the National Natural Science Foundation of China(32272587 and 32202342)the Programs for the Scientific Research Activities of Academic and Technical Leaders of Anhui Province,China(2020D251)+3 种基金the Development Fund for Talent Personnel of Anhui Agricultural University,China(rc342006)the University Synergy Innovation Program of Anhui Province,China(GXXT-2021-059)the Key Project of the Natural Science Foundation of Anhui Provincial Department of Education,China(2023AH040129)Anhui Province Agricultural Eco-Environmental Protection and Quality Safety Industry Technology System,China。
文摘Xanthomonas spp. cause severe bacterial diseases. However, effective strategies for prevention and management of these diseases are scarce. Thus, it is necessary to improve the efficiency of control of diseases caused by Xanthomonas. In this study, Xanthomonas oryzae pv. oryzae(Xoo), which causes rice bacterial leaf blight, has been studied as a representative. A transposon insertion library of Xoo, comprising approximately 200,000 individual insertion mutants, was generated. Transposon sequencing data indicated that the mariner C9 transposase mapped at 35.7–36.4% of all potential insertion sites, revealing 491 essential genes required for the growth of Xoo in rich media. The results show that, compared to the functions of essential genes of other bacteria, the functions of some essential genes of Xoo are unknown, 25 genes might be dangerous for the Xanthomonas group, and 3 are specific to Xanthomonas. High-priority candidates for developing broad-spectrum, Xanthomonas-specific, and environment-friendly bactericides were identified in this study. In addition, this study revealed the possible targets of dioctyldiethylenetriamine using surface plasmon resonance(SPR) in combination with high performance liquid chromatography–mass spectrometry(HPLC–MS). The study also provided references for the research of some certain bactericides with unknown anti-bacterial mode of action. In conclusion, this study urged a better understanding of Xanthomonas,provided meaningful data for the management of bacterial leaf blight, and disclosed selected targets of a novel bactericide.
文摘In the agricultural industry,rice infections have resulted in significant productivity and economic losses.The infections must be recognized early on to regulate and mitigate the effects of the attacks.Early diagnosis of disease severity effects or incidence can preserve production from quantitative and qualitative losses,reduce pesticide use,and boost ta country’s economy.Assessing the health of a rice plant through its leaves is usually done as a manual ocular exercise.In this manuscript,three rice plant diseases:Bacterial leaf blight,Brown spot,and Leaf smut,were identified using the Alexnet Model.Our research shows that any reduction in rice plants will have a significant beneficial impact on alleviating global food hunger by increasing supply,lowering prices,and reducing production's environmental impact that affects the economy of any country.Farmers would be able to get more exact and faster results with this technology,allowing them to administer the most acceptable treatment available.By Using Alex Net,the proposed approach achieved a 99.0%accuracy rate for diagnosing rice leaves disease.
基金National Research Council of Thailand(NRCT),Agricultural Research and Development Agency(ARDA),and National Center for Genetic Engineering and Biotechnology(BIOTEC),Thailand.
文摘Prevalence of chronic noncommunicable diseases(NCDs)is rapidly increasing and has become a global problem in modern day.Over consumption of simple,processed carbohydrate foods is considered one of the main causes of NCD in young and elderly populations.Whole grain rice is an important source of a complex carbohydrate,dietary fiber,enriched with vitamins,minerals,and antioxidants.However,palatability of brown rice is the key success factor among white-rice-addicted communities.In the initial phase,we successfully breed rice strains with aromatic,soft-whole grain,white rice contains high grain-Fe/Zn density and intermediate glycemic index(GI).The most successful variety was uniquely soft-textured black purple rice named Riceberry,depicting rice enriched with blueberry nutritional characteristics.Product development for fiber-rich,high antioxidant has been extremely active from academia,real sectors,and SMEs.In total,39 patent applications(18 granted patents),12 international publications,and 18,700 Youtubes related to Riceberry.From 2017,Riceberry has become the most popular choice for product development surpassing Thai Hommali Rice.More than 200 food and non-food products were commercialized as dairy replacement,side dishes,meals,hot beverages,bakery,and breakfast cereals.In the second phase,we successfully breed low GI rice strains named Pink+4 equipped with farmers’preferred resistance to flash flooding,bacterial leaf blight,leaf blast,and devastating brown planthopper adapted to organic rice production.Innovative products combined of low GI rice flour with purple Riceberry have been the next trend for functional ingredients and foods.These healthy rice products have high potential globally as healthy foods,gluten-free,fiber-rich,complex carbohydrate,and nutrient-dense from sustainable organic farming.