This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassemb...This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.展开更多
The human scalp harbors a diverse range of microbiome,much like other skin surfaces,where both beneficial and harmful microorganisms coexist.This study explores the possibility of balancing key scalp microorganisms,pa...The human scalp harbors a diverse range of microbiome,much like other skin surfaces,where both beneficial and harmful microorganisms coexist.This study explores the possibility of balancing key scalp microorganisms,particularly Staphylococcus epidermidis,Staphylococcus aureus and Malassezia species.While Staphylococcus epidermidis plays a beneficial role in maintaining scalp health by producing antimicrobial proteins and supporting the skin barrier,Staphylococcus aureus is identified as a pathogen linked to skin infections and dandruff formation.Malassezia fungi degrade triglycerides in sebum into unsaturated fatty acids,exacerbating scalp conditions like dandruff.In order to promote the beneficial microbe while inhibit the harmful ones,we investigated the combination of 1.0 mM pyrrolidone carboxylate-zinc(PCA-Zn),0.2%malt oligosaccharides(MT:corn-derived oligosaccharide mainly containing maltotetraose)and 0.05 mM Hinokitiol on its microbial activity,which significantly enhanced the growth of Staphylococcus epidermidis while inhibiting both Staphylococcus aureus and Malassezia,offering insights into promising strategies for scalp care.展开更多
With the continuous expansion of the data center network scale, changing network requirements, and increasing pressure on network bandwidth, the traditional network architecture can no longer meet people’s needs. The...With the continuous expansion of the data center network scale, changing network requirements, and increasing pressure on network bandwidth, the traditional network architecture can no longer meet people’s needs. The development of software defined networks has brought new opportunities and challenges to future networks. The data and control separation characteristics of SDN improve the performance of the entire network. Researchers have integrated SDN architecture into data centers to improve network resource utilization and performance. This paper first introduces the basic concepts of SDN and data center networks. Then it discusses SDN-based load balancing mechanisms for data centers from different perspectives. Finally, it summarizes and looks forward to the study on SDN-based load balancing mechanisms and its development trend.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To...BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To provide fair organ distribution,predictive mortality scores have been developed.AIM To compare the Acute Physiology and Chronic Health Evaluation IV(APACHE IV),balance of risk(BAR),and model for end-stage liver disease(MELD)scores as predictors of mortality.METHODS Retrospective cohort study,which included 283 adult patients in the postoperative period of deceased donor liver transplantation from 2014 to 2018.RESULTS The transplant recipients were mainly male,with a mean age of 58.1 years.Donors were mostly male,with a mean age of 41.6 years.The median cold ischemia time was 3.1 hours,and the median intensive care unit stay was 5 days.For APACHE IV,a mean of 59.6 was found,BAR 10.7,and MELD 24.2.The 28-day mortality rate was 9.5%,and at 90 days,it was 3.5%.The 28-day mortality prediction for APACHE IV was very good[area under the curve(AUC):0.85,P<0.001,95%CI:0.76-0.94],P<0.001,BAR(AUC:0.70,P<0.001,95%CI:0.58–0.81),and MELD(AUC:0.66,P<0.006,95%CI:0.55-0.78),P<0.008.At 90 days,the data for APACHE IV were very good(AUC:0.80,P<0.001,95%CI:0.71–0.90)and moderate for BAR and MELD,respectively,(AUC:0.66,P<0.004,95%CI:0.55–0.77),(AUC:0.62,P<0.026,95%CI:0.51–0.72).All showed good discrimination between deaths and survivors.As for the best value for liver transplantation,it was significant only for APACHE IV(P<0.001).CONCLUSION The APACHE IV assessment score was more accurate than BAR and MELD in predicting mortality in deceased donor liver transplant recipients.展开更多
In this paper, an identification method to estimate the unbalances is introduced, which is based on the boundary element method (BEM). By using the vibration response measured at some points on the flexible rotor the ...In this paper, an identification method to estimate the unbalances is introduced, which is based on the boundary element method (BEM). By using the vibration response measured at some points on the flexible rotor the unbalances can be identified conveniently. Therefore, the rotor can be balanced without test runs.展开更多
The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networ...The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.展开更多
In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. T...In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).展开更多
High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation ba...High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.展开更多
Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in cali...Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process, an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed. During calibration process, for the repeatedly-measured data obtained from experiments with different trial weights, according to the fact that measurement error of each sensor had the same statistical characteristics, the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established. During the updating process, information obtained from calibration was regarded as prior information, which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating. Moreover, Gibbs sampling method of Markov Chain Monte Carlo(MCMC) was adopted to obtain the maximum posterior estimation of parameters to be estimated. On the independent developed dynamic balancing testbed, prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively, the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy; the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process, and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.展开更多
In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The appro...In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.展开更多
Imbalance vibration is a typical failure mode of rotational machines and has significant negative effects on the efficiency,accuracy,and service life of equipment.To automatically reduce the imbalance vibration during...Imbalance vibration is a typical failure mode of rotational machines and has significant negative effects on the efficiency,accuracy,and service life of equipment.To automatically reduce the imbalance vibration during the operational process,different types of active balancing actuators have been designed and widely applied in actual production.However,the existing electromagnetic-ring active balancing actuator is designed based on an axial excitation structure which can cause structural instability and has low electromagnetic driving efficiency.In this paper,a novel radial excitation structure and the working principle of an electromagnetic-ring active balancing actuator with a combined driving strategy are presented in detail.Then,based on a finite element model,the performance parameters of the actuator are analyzed,and reasonable design parameters are obtained.Self-locking torque measurements and comparative static and dynamic experiments are performed to validate the self-locking torque and driving efficiency of the actuator.The results indicate that this novel active balancing actuator has sufficient self-locking torque,achieves normal step rotation at 2000 r/min,and reduces the driving voltage by 12.5%.The proposed novel balancing actuator using radial excitation and a combination of permanent magnets and soft-iron blocks has improved electromagnetic efficiency and a more stable and compact structure.展开更多
In Software-Dened Networks(SDN),the divergence of the control interface from the data plane provides a unique platform to develop a programmable and exible network.A single controller,due to heavy load trafc triggered...In Software-Dened Networks(SDN),the divergence of the control interface from the data plane provides a unique platform to develop a programmable and exible network.A single controller,due to heavy load trafc triggered by different intelligent devices can not handle due to it’s restricted capability.To manage this,it is necessary to implement multiple controllers on the control plane to achieve quality network performance and robustness.The ow of data through the multiple controllers also varies,resulting in an unequal distribution of load between different controllers.One major drawback of the multiple controllers is their constant conguration of the mapping of the switch-controller,quickly allowing unequal distribution of load between controllers.To overcome this drawback,Software-Dened Vehicular Networking(SDVN)has evolved as a congurable and scalable network,that has quickly achieved attraction in wireless communications from research groups,businesses,and industries administration.In this paper,we have proposed a load balancing algorithm based on latency for multiple SDN controllers.It acknowledges the evolving characteristics of real-time latency vs.controller loads.By choosing the required latency and resolving multiple overloads simultaneously,our proposed algorithm solves the loadbalancing problems with multiple overloaded controllers in the SDN control plane.In addition to the migration,our algorithm has improved 25%latency as compared to the existing algorithms.展开更多
An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalan...An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.展开更多
Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not e...Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not eliminate unbalanced vibration in the working state.Moreover,multiple start-stops are required in off-line balancing techniques.Therefore,research on an efficient electromagnetically-driven auto-balancer is carried out in the present work,and an internal excitation actuator is designed in this balancer.The electromagnetic characteristics of the two copper coil bobbins in the internal excitation actuator are compared and analyzed.The permanent magnets inside the actuator are simulated and analyzed with different sections of round,rectangular,and elliptical.And the results show that the elliptic type has the largest self-locking force.Finally,the dynamic balance test is performed on a test bench equipped with a designed electromagnetic balancing actuator,and the unbalance vibration is reduced from 130.23 μm to 5.98 μm.展开更多
Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.Howeve...Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.展开更多
Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Theref...Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.展开更多
Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resul...Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resulting in low load balancing,long load balancing time and data processing delay.Therefore,a data load balancing technology is applied to the massive storage systems of wearable devices in this paper.We first analyze the object-oriented load balancing method,and formally describe the dynamic load balancing issues,taking the load balancing as a mapping problem.Then,the task of assigning each data node and the request of the corresponding data node’s actual processing capacity are completed.Different data is allocated to the corresponding data storage node to complete the calculation of the comprehensive weight of the data storage node.According to the load information of each data storage node collected by the scheduler in the storage system,the load weight of the current data storage node is calculated and distributed.The data load balancing of the massive storage system for wearable devices is realized.The experimental results show that the average time of load balancing using this method is 1.75h,which is much lower than the traditional methods.The results show the data load balancing technology of the massive storage system of wearable devices has the advantages of short data load balancing time,high load balancing,strong data processing capability,short processing time and obvious application.展开更多
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
On the basis of offering a definition of New Rural Communities (NRCs), the paper analyzes the values of New Rural Communities and argues that the construction of NRCs is able to contribute to the enhancement of the co...On the basis of offering a definition of New Rural Communities (NRCs), the paper analyzes the values of New Rural Communities and argues that the construction of NRCs is able to contribute to the enhancement of the comprehensive agricultural production capability as well as the development of social productivity. Meanwhile the incomes of the rural residents can be boosted, which denotes the realization of a harmonious society where the achievements of China's reform and development are shared by each citizen. Moreover, the construction of NRCs facilitates the economization of land use and thus improves the overall living standard of the residents, while helping to cut the administrative cost and promote democracy at the primary level. This paper also points out various problems arising during the construction of NRCS in China: blindly following suit in accordance with the modes of the urban communities; lack of funds, which leads to the absence of the supporting mechanisms of NRCs; vague positioning and the ensuing shortage of impetus for continued development. Finally, the paper raises the corresponding measures and suggestions: first, based on reality, make overall planning and scientific arrangement; second, the government should play the dominant role while respecting the principal position of the rural residents and introducing the market mechanism; third, increase science and technology input and attach equal importance to economic and social benefits; fourth, broaden fund-raising channels while completing the supervision mechanism.展开更多
文摘This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.
文摘The human scalp harbors a diverse range of microbiome,much like other skin surfaces,where both beneficial and harmful microorganisms coexist.This study explores the possibility of balancing key scalp microorganisms,particularly Staphylococcus epidermidis,Staphylococcus aureus and Malassezia species.While Staphylococcus epidermidis plays a beneficial role in maintaining scalp health by producing antimicrobial proteins and supporting the skin barrier,Staphylococcus aureus is identified as a pathogen linked to skin infections and dandruff formation.Malassezia fungi degrade triglycerides in sebum into unsaturated fatty acids,exacerbating scalp conditions like dandruff.In order to promote the beneficial microbe while inhibit the harmful ones,we investigated the combination of 1.0 mM pyrrolidone carboxylate-zinc(PCA-Zn),0.2%malt oligosaccharides(MT:corn-derived oligosaccharide mainly containing maltotetraose)and 0.05 mM Hinokitiol on its microbial activity,which significantly enhanced the growth of Staphylococcus epidermidis while inhibiting both Staphylococcus aureus and Malassezia,offering insights into promising strategies for scalp care.
文摘With the continuous expansion of the data center network scale, changing network requirements, and increasing pressure on network bandwidth, the traditional network architecture can no longer meet people’s needs. The development of software defined networks has brought new opportunities and challenges to future networks. The data and control separation characteristics of SDN improve the performance of the entire network. Researchers have integrated SDN architecture into data centers to improve network resource utilization and performance. This paper first introduces the basic concepts of SDN and data center networks. Then it discusses SDN-based load balancing mechanisms for data centers from different perspectives. Finally, it summarizes and looks forward to the study on SDN-based load balancing mechanisms and its development trend.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
文摘BACKGROUND Liver transplantation aims to increase the survival of patients with end-stage liver diseases and improve their quality of life.The number of organs available for transplantation is lower than the demand.To provide fair organ distribution,predictive mortality scores have been developed.AIM To compare the Acute Physiology and Chronic Health Evaluation IV(APACHE IV),balance of risk(BAR),and model for end-stage liver disease(MELD)scores as predictors of mortality.METHODS Retrospective cohort study,which included 283 adult patients in the postoperative period of deceased donor liver transplantation from 2014 to 2018.RESULTS The transplant recipients were mainly male,with a mean age of 58.1 years.Donors were mostly male,with a mean age of 41.6 years.The median cold ischemia time was 3.1 hours,and the median intensive care unit stay was 5 days.For APACHE IV,a mean of 59.6 was found,BAR 10.7,and MELD 24.2.The 28-day mortality rate was 9.5%,and at 90 days,it was 3.5%.The 28-day mortality prediction for APACHE IV was very good[area under the curve(AUC):0.85,P<0.001,95%CI:0.76-0.94],P<0.001,BAR(AUC:0.70,P<0.001,95%CI:0.58–0.81),and MELD(AUC:0.66,P<0.006,95%CI:0.55-0.78),P<0.008.At 90 days,the data for APACHE IV were very good(AUC:0.80,P<0.001,95%CI:0.71–0.90)and moderate for BAR and MELD,respectively,(AUC:0.66,P<0.004,95%CI:0.55–0.77),(AUC:0.62,P<0.026,95%CI:0.51–0.72).All showed good discrimination between deaths and survivors.As for the best value for liver transplantation,it was significant only for APACHE IV(P<0.001).CONCLUSION The APACHE IV assessment score was more accurate than BAR and MELD in predicting mortality in deceased donor liver transplant recipients.
文摘In this paper, an identification method to estimate the unbalances is introduced, which is based on the boundary element method (BEM). By using the vibration response measured at some points on the flexible rotor the unbalances can be identified conveniently. Therefore, the rotor can be balanced without test runs.
基金supported in part by National Natural Science Foundation of China (No.61401331,No.61401328)111 Project in Xidian University of China(B08038)+2 种基金Hong Kong,Macao and Taiwan Science and Technology Cooperation Special Project (2014DFT10320,2015DFT10160)The National Science and Technology Major Project of the Ministry of Science and Technology of China(2015zx03002006-003)FundamentalResearch Funds for the Central Universities (20101155739)
文摘The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.
基金support and help of many individuals in the SASTRA University
文摘In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).
基金supported by National Science and Technology Support Program of China (Grant No. 2012BAF15G00)
文摘High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008 AA04Z114)
文摘Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process, an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed. During calibration process, for the repeatedly-measured data obtained from experiments with different trial weights, according to the fact that measurement error of each sensor had the same statistical characteristics, the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established. During the updating process, information obtained from calibration was regarded as prior information, which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating. Moreover, Gibbs sampling method of Markov Chain Monte Carlo(MCMC) was adopted to obtain the maximum posterior estimation of parameters to be estimated. On the independent developed dynamic balancing testbed, prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively, the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy; the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process, and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.
基金supported by the National Natural Science Foundation of China(No.61163058No.61201250 and No.61363006)Guangxi Key Laboratory of Trusted Software(No.KX201306)
文摘In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.
基金Supported by National Natural Scie nce Foun dation of China(Grant No.51875031)Youth Backb one Personal Project of Beijing(Grant No.2017000020124G018).
文摘Imbalance vibration is a typical failure mode of rotational machines and has significant negative effects on the efficiency,accuracy,and service life of equipment.To automatically reduce the imbalance vibration during the operational process,different types of active balancing actuators have been designed and widely applied in actual production.However,the existing electromagnetic-ring active balancing actuator is designed based on an axial excitation structure which can cause structural instability and has low electromagnetic driving efficiency.In this paper,a novel radial excitation structure and the working principle of an electromagnetic-ring active balancing actuator with a combined driving strategy are presented in detail.Then,based on a finite element model,the performance parameters of the actuator are analyzed,and reasonable design parameters are obtained.Self-locking torque measurements and comparative static and dynamic experiments are performed to validate the self-locking torque and driving efficiency of the actuator.The results indicate that this novel active balancing actuator has sufficient self-locking torque,achieves normal step rotation at 2000 r/min,and reduces the driving voltage by 12.5%.The proposed novel balancing actuator using radial excitation and a combination of permanent magnets and soft-iron blocks has improved electromagnetic efficiency and a more stable and compact structure.
基金The authors are thankful for the support of Taif University Researchers Supporting Project No.(TURSP-2020/10),Taif University,Taif,Saudi Arabia.Taif University Researchers Supporting Project No.(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
文摘In Software-Dened Networks(SDN),the divergence of the control interface from the data plane provides a unique platform to develop a programmable and exible network.A single controller,due to heavy load trafc triggered by different intelligent devices can not handle due to it’s restricted capability.To manage this,it is necessary to implement multiple controllers on the control plane to achieve quality network performance and robustness.The ow of data through the multiple controllers also varies,resulting in an unequal distribution of load between different controllers.One major drawback of the multiple controllers is their constant conguration of the mapping of the switch-controller,quickly allowing unequal distribution of load between controllers.To overcome this drawback,Software-Dened Vehicular Networking(SDVN)has evolved as a congurable and scalable network,that has quickly achieved attraction in wireless communications from research groups,businesses,and industries administration.In this paper,we have proposed a load balancing algorithm based on latency for multiple SDN controllers.It acknowledges the evolving characteristics of real-time latency vs.controller loads.By choosing the required latency and resolving multiple overloads simultaneously,our proposed algorithm solves the loadbalancing problems with multiple overloaded controllers in the SDN control plane.In addition to the migration,our algorithm has improved 25%latency as compared to the existing algorithms.
基金Supported by the National Natural Science Foundation of China (No. 50635010) and the National High Technology Research and Development Program of China ( No. 2007AA04Z422 ).
文摘An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.
基金Supported by the National Natural Suience Foundation of China(No.51775030,91860126).
文摘Mass imbalance-induced vibration affects the rotating machinery very large,especially the highspeed types.Off-line balancing techniques have been widely developed for rejecting unbalance-induced vibration but do not eliminate unbalanced vibration in the working state.Moreover,multiple start-stops are required in off-line balancing techniques.Therefore,research on an efficient electromagnetically-driven auto-balancer is carried out in the present work,and an internal excitation actuator is designed in this balancer.The electromagnetic characteristics of the two copper coil bobbins in the internal excitation actuator are compared and analyzed.The permanent magnets inside the actuator are simulated and analyzed with different sections of round,rectangular,and elliptical.And the results show that the elliptic type has the largest self-locking force.Finally,the dynamic balance test is performed on a test bench equipped with a designed electromagnetic balancing actuator,and the unbalance vibration is reduced from 130.23 μm to 5.98 μm.
基金the National Key Research and Development Program of China(No.2016YFB0100603)National Natural Science Foundation of China(No.51877193)。
文摘Modular multilevel resonant converter is an promising candidate for high voltage applications since it has advantageous features,such as high efficiency,high voltage capability and easy fault-tolerant operation.However,the inequality of arm inductance in practice will lead to imbalance between the upper and lower arm voltages,which will induce large ripples in the circulating current and a dc bias on the voltage generated by modular circuits.To compensate for the voltage imbalance,effects of arm duty cycle changes on arm voltages are discussed.An arm voltage balancing control method is proposed:adjust arm duty cycle according to arm voltage deviation in every switching cycle.Simulation and experimental results are presented to validate the theoretical analysis and the proposed control method.
文摘Due to the well condition and the un-expected imbalance movement of the pumping unit in use, the energy consumes a lot. The existing balancing equipment cannot adjust and monitor the pumping units in real time. Therefore this paper introduces the new adaptive balancing equipment—fan-shaped adaptive balancing intelligent device, projects a design of such control system based on PLC, and determines the principle of the control system, the execution software and the design flow. Site commissioning effect on Daqing Oilfield shows this fan-shaped adaptive balancing intelligent device can effectively adjust and monitor the pumping unit in real time, the balance even adjusts from 0.787 to 0.901, and integrated energy saving rate is 14.2%. It is approved that this control device is professionally designed, with strong compatibility, and high reliability.
文摘Because of the limited memory of the increasing amount of information in current wearable devices,the processing capacity of the servers in the storage system can not keep up with the speed of information growth,resulting in low load balancing,long load balancing time and data processing delay.Therefore,a data load balancing technology is applied to the massive storage systems of wearable devices in this paper.We first analyze the object-oriented load balancing method,and formally describe the dynamic load balancing issues,taking the load balancing as a mapping problem.Then,the task of assigning each data node and the request of the corresponding data node’s actual processing capacity are completed.Different data is allocated to the corresponding data storage node to complete the calculation of the comprehensive weight of the data storage node.According to the load information of each data storage node collected by the scheduler in the storage system,the load weight of the current data storage node is calculated and distributed.The data load balancing of the massive storage system for wearable devices is realized.The experimental results show that the average time of load balancing using this method is 1.75h,which is much lower than the traditional methods.The results show the data load balancing technology of the massive storage system of wearable devices has the advantages of short data load balancing time,high load balancing,strong data processing capability,short processing time and obvious application.
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
文摘On the basis of offering a definition of New Rural Communities (NRCs), the paper analyzes the values of New Rural Communities and argues that the construction of NRCs is able to contribute to the enhancement of the comprehensive agricultural production capability as well as the development of social productivity. Meanwhile the incomes of the rural residents can be boosted, which denotes the realization of a harmonious society where the achievements of China's reform and development are shared by each citizen. Moreover, the construction of NRCs facilitates the economization of land use and thus improves the overall living standard of the residents, while helping to cut the administrative cost and promote democracy at the primary level. This paper also points out various problems arising during the construction of NRCS in China: blindly following suit in accordance with the modes of the urban communities; lack of funds, which leads to the absence of the supporting mechanisms of NRCs; vague positioning and the ensuing shortage of impetus for continued development. Finally, the paper raises the corresponding measures and suggestions: first, based on reality, make overall planning and scientific arrangement; second, the government should play the dominant role while respecting the principal position of the rural residents and introducing the market mechanism; third, increase science and technology input and attach equal importance to economic and social benefits; fourth, broaden fund-raising channels while completing the supervision mechanism.