A novel balun structure for dipole antenna,which is based on the current distribution on parallel microstrip lines and the emission cancellation characteristic of close equal and opposite currents,is proposed.The prin...A novel balun structure for dipole antenna,which is based on the current distribution on parallel microstrip lines and the emission cancellation characteristic of close equal and opposite currents,is proposed.The principle of the balun structure is first elaborated and verified.Then,a dipole antenna with resonance at 2.45 GHz is constructed using the balun and its radiation pattern is measured.The simulated and measured reflection coefficients(S_(11))of the antenna are in good agreement 2—3 GHz.The relative bandwidth with an S_(11) of below-10 dB is more than 25%.The antenna also shows a good radiation pattern at 2.45 GHz.The proposed structure can provide a new balun design method for dipole antennas.展开更多
A planar circuit structure, which is based on three cascaded pairs of coupled lines, an open stub, and an isolation resistor, is proposed in this paper to design a compact dual.band balun with high isolation. This cir...A planar circuit structure, which is based on three cascaded pairs of coupled lines, an open stub, and an isolation resistor, is proposed in this paper to design a compact dual.band balun with high isolation. This circuit features equal power division with out of phase, all ports matching, high isolation between two outputs, compact structure, and inherent impedance transformation. The closedform design equations are derived based on the traditional transmission.line theory and even.(odd.) mode analysis. A practical dual.band balun, which operates at 0.9/1.8GHz, is designed and fabricated to validate the function of equal power division with out of phase and high isolation between two outputs. The consistency between the simulated and measured results verify the design theory.展开更多
A high performance Balun BandPass Filter (BPF) with capacitively loaded multiple coupled lines with very simple structure is proposed in this paper, this structure realizes simultaneous size reduction and superior har...A high performance Balun BandPass Filter (BPF) with capacitively loaded multiple coupled lines with very simple structure is proposed in this paper, this structure realizes simultaneous size reduction and superior harmonic response suppression performance in bandpass filtering meanwhile good differential performance of the Balun. The theory of this structure for unbalanced input into balanced output has been studied in this paper and a proper Balun and BPF characteristic by the symmetric feeding and skew symmetric feeding have been obtained to prove the theory. The enter frequency of the fabricated Balun-BPF is operated at 2.45 GHz with 6.93% Fractional Band Width (FBW), and this frequency is used for Bluetooth and some other communication systems. The differences between the two outputs are 180°± 1.92° in phase and within 0.33 dB in magnitude. At f0, the amplitude imbalance and phase difference are within 0.25 dB and 180.86°, respectively. The measured frequency responses agree well with the simulated ones. With the theoretical analyses and practical results, it is shown that the proposed one has the advantages of simple structure, convenient analysis and good performance of both BPF and Balun.展开更多
A bandwidth-enhanced dual-polarized antenna is proposed for 2/3/4/5G applications,which is composed of distributed parasitic elements(DPEs),a main radiator,two improved broadband integrated baluns and a reflector.Firs...A bandwidth-enhanced dual-polarized antenna is proposed for 2/3/4/5G applications,which is composed of distributed parasitic elements(DPEs),a main radiator,two improved broadband integrated baluns and a reflector.First,a novel tooth-shape shorted slot line in the improved broadband integrated balun is analyzed to adjust the input impedance of the antenna.Then,DPEs with 2×2 circular plates loading over the main radiator are proposed to improve broadband impedance matching and radiation pattern.By utilizing impedance compensation of the tooth-shaped shorted slot line and the electromagnetic induction of the DPEs,the antenna achieves an enhanced impedance bandwidth and a stable radiation pattern.To verify these ideas,the bandwidth-enhanced dual-polarized antenna was fabricated and measured.The experimental results indicate that the proposed antenna achieves an operating bandwidth of 72.2%(1.69 to 3.60 GHz)with a return loss(RL)less than-15 dB and a port-to-port isolation(ISO)larger than 30 dB.The antenna obtains a half-power beamwidth(HPBW)within(66±5)°and a gain within(9.0±0.6)dBi in the 2/3/4G bands,and an HPBW within(61.5±2.5)°and a gain within(9.8±0.3)dBi in the 5G band.Across the whole band,the cross-polarization discrimination(XPD)and the front-to-back ratio are both larger than 20 dB.展开更多
In the present paper, design and analysis of a 2.4 GHz printed dipole antenna for wireless communication applications are presented. Measurements on return loss and radiation pattern of this antenna configuration are ...In the present paper, design and analysis of a 2.4 GHz printed dipole antenna for wireless communication applications are presented. Measurements on return loss and radiation pattern of this antenna configuration are included in this investigation. The printed dipole is combined with the feeding structure of a microstrip via-hole balun and is fabricated on an FR-4 printed-circuit-board substrate. Two inevitable discontinuities are introduced by this antenna architecture in the form of right-angle bends in the microstrip feed line and in the dipole’s gap, respectively. The impact of mitering these bends in the reflection coefficient, resonance bandwidth and radiation pattern of antenna has been investigated by means of simulation and experiment.展开更多
This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular a...This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular and rectangular) along with two types of feeding techniques (Microstrip line L-shape and Microstrip line I-shape). The performance of the antenna for each technique is thoroughly investigated using Computer Simulation Technology (CST) Microwave Studio software simulation under the resonant frequency of 5.9 GHz. Results demonstrate that the proposed model is an effective tool for improving antenna performance. Moreover, an extensive comparison has been carried out between the two different shapes, with and without antenna balun and between two feeding techniques focusing on return losses, gain, directivity, and voltage standing wave ratio (VSWR).展开更多
A simple method of balun synthesis is proposed to estimate the balun structure in the operating frequency band.Then,a careful optimization is implemented to evaluate the estimated structure by a series of EM simulatio...A simple method of balun synthesis is proposed to estimate the balun structure in the operating frequency band.Then,a careful optimization is implemented to evaluate the estimated structure by a series of EM simulations. In order to investigate the impact of the patterned floating shield(PFS),the optimized baluns with and without PFS are fabricated in a 65 nm 1P6M CMOS process.The measurement results demonstrate that the PFS obviously improves the insertion loss(IL) in the frequency range and a linear improving trend appears smoothly.It is also found that the PFS gradually improves the phase balance as the frequency increases,while it has a very slight influence on the magnitude balance.To characterize the device's intrinsic power transfer ability,we propose a method to obtain the baluns' maximum available gain directly from the measured 3-port S-parameters and find that IL-comparison may not be very objective when evaluating the shielding effect.We also use the resistive coupling efficiency to characterize the shielding effect,and an imbalanced shielding efficiency is found though the PFS is perfectly symmetric in the measurement.It can be demonstrated that this phenomenon comes from the intrinsic imbalance of our balun layout.展开更多
A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside c...A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral Marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of -15- -12.5 dB at fixed fIF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28 35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred PIdB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm^2 including pads.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No. 30920140122005)the Research Innovation Program for College Graduates of Jiangsu Province (No.CXLX11_ 0198)
文摘A novel balun structure for dipole antenna,which is based on the current distribution on parallel microstrip lines and the emission cancellation characteristic of close equal and opposite currents,is proposed.The principle of the balun structure is first elaborated and verified.Then,a dipole antenna with resonance at 2.45 GHz is constructed using the balun and its radiation pattern is measured.The simulated and measured reflection coefficients(S_(11))of the antenna are in good agreement 2—3 GHz.The relative bandwidth with an S_(11) of below-10 dB is more than 25%.The antenna also shows a good radiation pattern at 2.45 GHz.The proposed structure can provide a new balun design method for dipole antennas.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(The Project-sponsored by SRF for ROCS,SEM)National Natural Science Foundation of China(61273142)+1 种基金China Postdoctoral Science Foundation(2015M570414)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
基金supported by National Natural Science Foundations of China (No.61422103, and No.61671084)National Key Basic Research Program of China (973 Program) (No.2014CB339900)BUPT Excellent Ph.D. Students Foundation (CX2016303)
文摘A planar circuit structure, which is based on three cascaded pairs of coupled lines, an open stub, and an isolation resistor, is proposed in this paper to design a compact dual.band balun with high isolation. This circuit features equal power division with out of phase, all ports matching, high isolation between two outputs, compact structure, and inherent impedance transformation. The closedform design equations are derived based on the traditional transmission.line theory and even.(odd.) mode analysis. A practical dual.band balun, which operates at 0.9/1.8GHz, is designed and fabricated to validate the function of equal power division with out of phase and high isolation between two outputs. The consistency between the simulated and measured results verify the design theory.
文摘A high performance Balun BandPass Filter (BPF) with capacitively loaded multiple coupled lines with very simple structure is proposed in this paper, this structure realizes simultaneous size reduction and superior harmonic response suppression performance in bandpass filtering meanwhile good differential performance of the Balun. The theory of this structure for unbalanced input into balanced output has been studied in this paper and a proper Balun and BPF characteristic by the symmetric feeding and skew symmetric feeding have been obtained to prove the theory. The enter frequency of the fabricated Balun-BPF is operated at 2.45 GHz with 6.93% Fractional Band Width (FBW), and this frequency is used for Bluetooth and some other communication systems. The differences between the two outputs are 180°± 1.92° in phase and within 0.33 dB in magnitude. At f0, the amplitude imbalance and phase difference are within 0.25 dB and 180.86°, respectively. The measured frequency responses agree well with the simulated ones. With the theoretical analyses and practical results, it is shown that the proposed one has the advantages of simple structure, convenient analysis and good performance of both BPF and Balun.
基金The National Natural Science Foundation of China(No.61471117).
文摘A bandwidth-enhanced dual-polarized antenna is proposed for 2/3/4/5G applications,which is composed of distributed parasitic elements(DPEs),a main radiator,two improved broadband integrated baluns and a reflector.First,a novel tooth-shape shorted slot line in the improved broadband integrated balun is analyzed to adjust the input impedance of the antenna.Then,DPEs with 2×2 circular plates loading over the main radiator are proposed to improve broadband impedance matching and radiation pattern.By utilizing impedance compensation of the tooth-shaped shorted slot line and the electromagnetic induction of the DPEs,the antenna achieves an enhanced impedance bandwidth and a stable radiation pattern.To verify these ideas,the bandwidth-enhanced dual-polarized antenna was fabricated and measured.The experimental results indicate that the proposed antenna achieves an operating bandwidth of 72.2%(1.69 to 3.60 GHz)with a return loss(RL)less than-15 dB and a port-to-port isolation(ISO)larger than 30 dB.The antenna obtains a half-power beamwidth(HPBW)within(66±5)°and a gain within(9.0±0.6)dBi in the 2/3/4G bands,and an HPBW within(61.5±2.5)°and a gain within(9.8±0.3)dBi in the 5G band.Across the whole band,the cross-polarization discrimination(XPD)and the front-to-back ratio are both larger than 20 dB.
文摘In the present paper, design and analysis of a 2.4 GHz printed dipole antenna for wireless communication applications are presented. Measurements on return loss and radiation pattern of this antenna configuration are included in this investigation. The printed dipole is combined with the feeding structure of a microstrip via-hole balun and is fabricated on an FR-4 printed-circuit-board substrate. Two inevitable discontinuities are introduced by this antenna architecture in the form of right-angle bends in the microstrip feed line and in the dipole’s gap, respectively. The impact of mitering these bends in the reflection coefficient, resonance bandwidth and radiation pattern of antenna has been investigated by means of simulation and experiment.
文摘This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular and rectangular) along with two types of feeding techniques (Microstrip line L-shape and Microstrip line I-shape). The performance of the antenna for each technique is thoroughly investigated using Computer Simulation Technology (CST) Microwave Studio software simulation under the resonant frequency of 5.9 GHz. Results demonstrate that the proposed model is an effective tool for improving antenna performance. Moreover, an extensive comparison has been carried out between the two different shapes, with and without antenna balun and between two feeding techniques focusing on return losses, gain, directivity, and voltage standing wave ratio (VSWR).
文摘A simple method of balun synthesis is proposed to estimate the balun structure in the operating frequency band.Then,a careful optimization is implemented to evaluate the estimated structure by a series of EM simulations. In order to investigate the impact of the patterned floating shield(PFS),the optimized baluns with and without PFS are fabricated in a 65 nm 1P6M CMOS process.The measurement results demonstrate that the PFS obviously improves the insertion loss(IL) in the frequency range and a linear improving trend appears smoothly.It is also found that the PFS gradually improves the phase balance as the frequency increases,while it has a very slight influence on the magnitude balance.To characterize the device's intrinsic power transfer ability,we propose a method to obtain the baluns' maximum available gain directly from the measured 3-port S-parameters and find that IL-comparison may not be very objective when evaluating the shielding effect.We also use the resistive coupling efficiency to characterize the shielding effect,and an imbalanced shielding efficiency is found though the PFS is perfectly symmetric in the measurement.It can be demonstrated that this phenomenon comes from the intrinsic imbalance of our balun layout.
基金Project supported by the National Basic Research Program (973) of China (No. 2010CB327404)the National High-Tech R&D Program (863) of China (No. 2011AA10305)the National Natural Science Foundation of China (No. 60901012)
文摘A Ka-band sub-harmonically pumped resistive mixer (SHPRM) was designed and fabricated using the standard 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. An area-effective asymmetric broadside coupled spiral Marchand balance-to-unbalance (balun) with magnitude and phase imbalance compensation is used in the mixer to transform local oscillation (LO) signal from single to differential mode. The results showed that the SHPRM achieves the conversion gain of -15- -12.5 dB at fixed fIF=0.5 GHz with 8 dBm LO input power for the radio frequency (RF) bandwidth of 28 35 GHz. The in-band LO-intermediate freqency (IF), RF-IF, and LO-RF isolations are better than 31, 34, and 36 dB, respectively. Besides, the 2LO-IF and 2LO-RF isolations are better than 60 and 45 dB, respectively. The measured input referred PIdB and 3rd-order inter-modulation intercept point (IIP3) are 0.5 and 10.5 dBm, respectively. The measurement is performed under a gate bias voltage as low as 0.1 V and the whole chip only occupies an area of 0.33 mm^2 including pads.