期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Broken Rotor Bar Fault Detection of Induction Motors Using a Joint Algorithm of Trust Region and Modified Bare-bones Particle Swarm Optimization 被引量:1
1
作者 Panpan Wang Liping Shi +2 位作者 Yong Zhang Yifan Wang Li Han 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期65-78,共14页
A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular techn... A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components. 展开更多
关键词 Fault detection Broken rotor BARS Induction motors bare-bones particle SWARM optimization Trust region
下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
2
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
下载PDF
Feature extraction of induction motor stator fault based on particle swarm optimization and wavelet packet
3
作者 WANG Pan-pan SHI Li-ping +1 位作者 HU Yong-jun MIAO Chang-xin 《Journal of Coal Science & Engineering(China)》 2012年第4期432-437,共6页
To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorith... To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed. First, according to the maximum inner product between the current signal and the cosine basis functions, this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO, which can eliminate the fundamental component and not affect other harmonic components. Then, the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor. Finally, the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method. 展开更多
关键词 induction machine stator winding intertum short circuit bare-bones particle swarm optimization feature extraction wavelet packet fault diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部