Possible influences of the Barents Sea ice anomalies on the Eurasian atmospheric circulation and the East China precipitation distribution in the late spring and early summer (May-June) are investigated by analyzing t...Possible influences of the Barents Sea ice anomalies on the Eurasian atmospheric circulation and the East China precipitation distribution in the late spring and early summer (May-June) are investigated by analyzing the observational data and the output of an atmospheric general circulation model (AGCM). The study indicates that the sea ice condition of the Barents Sea from May to July may be interrelated with the atmospheric circulation of June. When there is more than average sea ice in the Barents Sea, the local geopotential height of the 500-hPa level will decrease, and the same height in the Lake Baikal and Okhotsk regions will increase and decrease respectively to form a wave-chain structure over North Eurasia. This kind of anomalous height pattern is beneficial to more precipitation in the south part of East China and less in the north.展开更多
This study reveals a significant relationship, on the interannual timescale, between a dipole mode, the second leading mode, of spring sea-ice anomalies in the Barents Sea and the following-summer rainfall in East Asi...This study reveals a significant relationship, on the interannual timescale, between a dipole mode, the second leading mode, of spring sea-ice anomalies in the Barents Sea and the following-summer rainfall in East Asia. Related to the dipole mode, with the heavier sea ice in the north and lighter sea ice in the southeast Barents Sea in spring, the East Asian summer subtropical rainy belt tends to move northward. The significant relationship is established through a wave train over northern Eurasia in the lower troposphere in June. The wave train enhances the northern East Asian low, which induces more rainfall to the north of the East Asian subtropical rainy belt and then attracts the subtropical rainy belt to move northward. This study suggests that the dipole mode of spring sea-ice anomalies in the Barents Sea may be a good precursor for the prediction of East Asian summer rainfall.展开更多
The grain size distribution of bulk sediment samples was decomposed in a core to reconstruct paleoceanographic evolution over the past 60 ka in the northern Norwegian Sea.The results show that sediments consisted of 3...The grain size distribution of bulk sediment samples was decomposed in a core to reconstruct paleoceanographic evolution over the past 60 ka in the northern Norwegian Sea.The results show that sediments consisted of 3–4 grain populations derived from the North Atlantic Current(NAC)and Barents Ice Sheet(BIS).The grain size data suggest three palaeoceanographic evolution stages:(1)an environment affected by BIS and NAC and changed with the interstadial/stadial transition in phase with the Greenland ice-core record at 60–31 ka BP,during which discharge of icebergs and the content of the coarsest population containing ice-rafted debris(IRD)in the sediments increased significantly during stadial,while the fine silt population containing volcanic glasses increased with the enhancement of NAC during the interstadial;(2)an extreme environment controlled by BIS at31–13 ka BP.BIS reached to its maximum at about 31 ka BP and the turbid plumes that formed at the leading edge of BIS contributed to a significant increase in the clayey population in sediments.Icebergs drained into the northern Norwegian Sea with periodical calving of the BIS at 31–19 ka BP.Subsequently,the ablation of the BIS discharged massive floods with clayey sediments and icebergs into the Norwegian Sea at 19–13 ka BP,resulting in a constant increase in clay and IRD in sediments;and(3)a marine environment similar to the present one under the strong influence of NAC following the complete melting of the BIS after 13 ka BP,NAC is the dominant transport agent and no IRD occurred in sediments.The fine silt populations containing volcanic glasses transported by NAC significantly increased.展开更多
This study investigated atmospheric responses in mid late winter and early spring to sea ice loss in the Barents and Kara seas using regressions of the January March mean atmosphere on Barents and Kara sea ice area in...This study investigated atmospheric responses in mid late winter and early spring to sea ice loss in the Barents and Kara seas using regressions of the January March mean atmosphere on Barents and Kara sea ice area in November and December.Similar atmospheric circulation responses were obtained from reanalysis data and multimodel ensemble results from the Coupled Model Intercomparison Project Phase 5,i.e.,sea ice anomalies are the dominant factor driving the overlying atmosphere.The results showed that an Arctic Asia dipole structure,with opposite anomalies over the mid-latitudes of Asia and over the adjoining Arctic,appears to be the key atmospheric circulation anomaly influencing the East Asian climate in mid late winter and early spring.展开更多
New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1...New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.展开更多
This is the first report of the Barents Sea Ice Edge (BIE) project. The BIE position has varied between latitude 76<span style="white-space:nowrap;">°</span>N and above 82<span style=&...This is the first report of the Barents Sea Ice Edge (BIE) project. The BIE position has varied between latitude 76<span style="white-space:nowrap;">°</span>N and above 82<span style="white-space:nowrap;">°</span>N during the last 440 years. During the period 10,000 to 6000 years ago, Arctic climate was significantly warmer than today. We review various oceanic and atmospheric factors that may have an effect on the BIE position. The Gulf Stream beat with respect to alternations in flow intensity and N-S distribution plays a central role for the changes in climate and BIE position during the last millennium. This occurred in combination with external forcing from total solar irradiation, Earth’s shielding strength, Earth’s geomagnetic field intensity, Earth’s rotation, jet stream changes;all factors of which are ultimately driven by the planetary beat on the Sun, the Earth and the Earth-Moon system. During the last 20 years, we see signs of changes and shifts that may signal the end of the late 20<sup>th</sup> century warm period. The BIE position is likely to start advancing southward in next decade.展开更多
In the Arctic (mainly in its European sector) there is statistically detectable seasonal reversal wind pattern. The combination of seasonally warm (cold) land surfaces in arctic areas together with cool (cool) sea sur...In the Arctic (mainly in its European sector) there is statistically detectable seasonal reversal wind pattern. The combination of seasonally warm (cold) land surfaces in arctic areas together with cool (cool) sea surface of Arctic seas not covered by ice is conducive to the formation of a monsoon like system. On the other hand, the predominance of the cyclonic regime during all seasons makes it difficult to answer the question of whether the Arctic region belongs to the monsoon type pattern. In this study, the monsoon features of atmospheric circulation over the Barents and Kara Seas were analysed. To extract specific monsoon signs, atmospheric circulation systems (separately for areas of each sea) were divided into ten weather types. Their appearance and statistics were compared with indicators of regional circulation. A significant part of intra-annual monsoon variability is associated with the configuration of such modes as the North Atlantic Oscillation and the <em>Scandinavia</em> teleconnection patterns. For example, during the winter season, the monsoon currents (from land to sea) occur only with a positive North Atlantic Oscillation index. With the prevalence of other modes of variability, the direction of the winds can be different, and the regular monsoon circulation pattern is changed by chaotic regime. In summer, northern streams (from sea to land) are realized on the western periphery of cyclones, regenerating and stabilizing over the Kara Sea. As for anomalies, the nature of the monsoons is manifested in the statistics of extreme winds even without selecting data on the regimes of variability. So, in winter, maximum speeds fall on the southern streams, and in the summer—on the northern ones. Large precipitation anomalies during all seasons, as one would expect, are encountered most often with the cyclonic type of circulation.展开更多
Marine controlled source electromagnetic(CSEM) data have been utilized in the past decade during petroleum exploration of the Barents Shelf, particularly for de-risking the highly porous sandstone reservoirs of the Up...Marine controlled source electromagnetic(CSEM) data have been utilized in the past decade during petroleum exploration of the Barents Shelf, particularly for de-risking the highly porous sandstone reservoirs of the Upper Triassic to Middle Jurassic Realgrunnen Subgroup. In this contribution we compare the resistivity response from CSEM data to resistivity from wireline logs in both water-and hydrocarbon-bearing wells. We show that there is a very good match between these types of data, particularly when reservoirs are shallow. CSEM data, however, only provide information on the subsurface resistivity. Careful, geology-driven interpretation of CSEM data is required to maximize the impact on exploration success. This is particularly important when quantifying the relative resistivity contribution of high-saturation hydrocarbon-bearing sandstone and that of the overlying cap rock. In the presented case the cap rock comprises predominantly organic rich Upper Jurassic–Early Cretaceous shales of the Hekkingen Formation(i.e. a regional source rock). The resistivity response of the reservoir and its cap rock become merged in CSEM data due to the transverse resistance equivalence principle. As a result of this, it is imperative to understand both the relative contributions from reservoir and cap rock, and the geological significance of any lateral resistivity variation in each of the units. In this contribution, we quantify the resistivity of organic rich mudstone, i.e. source rock, and reservoir sandstones, using 131 exploration boreholes from the Barents Shelf. The highest resistivity(>10,000 Ωm) is evident in the hydrocarbon-bearing Realgrunnen Subgroup which is reported from 48 boreholes, 43 of which are used for this study. Pay zone resistivity is primarily controlled by reservoir quality(i.e. porosity and shale fraction) and fluid phase(i.e. gas, oil and water saturation).In the investigated wells, the shale dominated Hekkingen Formation exhibits enhanced resistivity compared to the background(i.e. the underlying and overlying stratigraphy), though rarely exceeds 20 Ωm. Marine mudstones typically show good correlation between measured organic richness and resistivity/sonic velocity log signatures.We conclude that the resistivity contribution to the CSEM response from hydrocarbon-bearing sandstones outweighs that of the organic rich cap rocks.展开更多
Dramatic changes in the sea ice characteristics in the Barents Sea have potential consequences for the weather and climate systems of mid-latitude continents,Arctic ecosystems,and fisheries,as well as Arctic maritime ...Dramatic changes in the sea ice characteristics in the Barents Sea have potential consequences for the weather and climate systems of mid-latitude continents,Arctic ecosystems,and fisheries,as well as Arctic maritime navigation.Simulations and projections of winter sea ice in the Barents Sea based on the latest 41 climate models from the Coupled Model Intercomparison Project Phase 6(CMIP6)are investigated in this study.Results show that most CMIP6 models overestimate winter sea ice in the Barents Sea and underestimate its decreasing trend.The discrepancy is mainly attributed to the simulation bias towards an overly weak ocean heat transport through the Barents Sea Opening and the underestimation of its increasing trend.The methods of observation-based model selection and emergent constraint were used to project future winter sea ice changes in the Barents Sea.Projections indicate that sea ice in the Barents Sea will continue to decline in a warming climate and that a winter ice-free Barents Sea will occur for the first time during 2042-2089 under the Shared Socioeconomic Pathway 585(SSP5-8.5).Even in the observation-based selected models,the sensitivity of winter sea ice in the Barents Sea to global warming is weaker than observed,indicating that a winter ice-free Barents Sea might occur earlier than projected by the CMIP6 simulations.展开更多
The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation(BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scal...The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation(BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990–2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature(SAT)anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly,causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.展开更多
We studied effects of sea surface temperature anomaly (SSTA) in the Barents Sea in autumn on the atmospheric circulation in northeast China in winter, using the NCEP reanalysis data and sea surface temperature (SST) d...We studied effects of sea surface temperature anomaly (SSTA) in the Barents Sea in autumn on the atmospheric circulation in northeast China in winter, using the NCEP reanalysis data and sea surface temperature (SST) data of the Hadley Center. The results show that the ocean thermal conditions in the Barents Sea in autumn can be used as an important reference factor for predicting the cold air activity in China. When the sea surface temperature anomaly of the Barents Sea elevated in the autumn, the sea-level pressure anomaly elevated in eastern China on December, northeast China and southeastern Russia on January and February. In the years when the SSTA of the Barents Sea elevated in the autumn, the abnormal high-pressure ridge developed over Europe, and the geopotential height in western China appeared negative anomaly at 500 hPa. At 1000 hPa, the Mongolia high-pressure increased and the northerly airflow strengthened the cold high-latitude air broke out to the south, which was easy to affect northeast and north of China. In negative SSTA years, the high-pressure ridge was west to the north Atlantic, and the geopotential height in central and northern Siberia appeared negative anomaly at 500 hPa;the Mongolia high-pressure was weakened at 1000 hPa.展开更多
This is the second paper in a series of two, which analyze the position of the Barents Sea ice-edge (BIE) based on a 442-year long dataset to understand its time variations. The data have been collected from ship-logs...This is the second paper in a series of two, which analyze the position of the Barents Sea ice-edge (BIE) based on a 442-year long dataset to understand its time variations. The data have been collected from ship-logs, polar expeditions, and hunters in addition to airplanes and satellites in recent times. Our main result is that the BIE position alternates between a southern and a northern position followed by Gulf Stream Beats (GSBs) at the occurrence of deep solar minima. We decompose the low frequency BIE position variations in cycles composed of dominant periods which are related to the Jose period of 179 years, indicating planetary forcings. We propose that the mechanism transferring planetary signals into changes in BIE position is the solar wind (SW), which provides magnetic shielding of the Earth in addition to geomagnetic disturbances. Increase in the solar wind produces pressure which decelerates the Earth’s rotation. It also transfers electrical energy to the ring current in the earth’s magnetosphere. This current magnetizes the earth’s solid core and makes it rotate faster. To conserve angular momentum the earth’s outer fluid mantle rotates slower with a delay of about 100 years. In addition will geomagnetic storms, initiated by solar coronal mass ejections (CMEs) penetrate deep in the Earth’s atmosphere and change pressure pattern in the Arctic. This effect is larger during solar minima since the magnetic shielding then is reduced. The Arctic may then experience local warming. The transition of solar activities to a possibly deep and long minimum in the present century may indicate Arctic cooling and the BIE moving south this century. For the North Atlantic region, effects of the BIE expanding southward will have noticeable consequences for the ocean bio-production from about 2040.展开更多
By analyzing the observation data and performing the numerical simulation tests,it is shown that the Kara and the Barents Sea area is a key region to influence climate variation over the Northern Hemisphere.The variat...By analyzing the observation data and performing the numerical simulation tests,it is shown that the Kara and the Barents Sea area is a key region to influence climate variation over the Northern Hemisphere.The variation of winter sea-ice area in the key region is closely associated with that of the EU teleconnection pattern at 500 hPa and East Asia winter monsoon(EAWM) intensity.When a heavy sea-ice prevails in the key region,the EU teleconnection pattern at 500 hPa is excited easily(there are positive 500 hPa height anomalies over around Japan and West Europe),and winter Siberia high is weakened,meanwhile,sea level pressure(SLP)has positive anomalies over the Northern Pacific.Therefore,EAWM will be weakened,winter temperature over East Asia is above normal and the frequency of cold-air activity in February in China will be decreased.When the light sea-ice occurs in the key region,the results will be opposite.展开更多
The Tibetan Plateau(TP)is characterized by heavily local dust activities,however,the mechanism of interannual variations of winter dust frequency over the TP remain poorly understood.Previous studies showed the autumn...The Tibetan Plateau(TP)is characterized by heavily local dust activities,however,the mechanism of interannual variations of winter dust frequency over the TP remain poorly understood.Previous studies showed the autumn Arctic sea ice could significantly influence the winter climate over Eurasia.Whether autumn sea ice affects winter dust activity over the TP or not?Here,we used an integrated surface database to investigate possible mechanisms for interannual variability in the frequency of winter dust events above the TP.This variability,which is thought to be mainly caused by local dust emissions,shows significant correlations with sea ice concentration(SIC)in the Barents and Kara Seas during the preceding autumn.Low Barents-Kara SIC is accompanied by reduced snow depth over northern Eurasia between autumn and winter,which can enhance the Eurasian mid-latitude westerly jet stream.This strengthening increases the cyclogenesis and occurrence of strong surface wind speeds in winter,especially over the TP.In addition,a lower SIC is closely associated with reduced precipitation and snow cover in late autumn and winter over the TP,which in turn enhances warming of the land surface and reduces the area of frozen ground.These anomalies in atmospheric circulation patterns and local surface conditions promote dust events above the TP during winter.The ensemble means of Atmospheric Model Intercomparison Project experiments from Phase 6 of the Coupled Model Inter-comparison Project and the Community Atmosphere Model version 4 can generally reproduce the atmospheric circulation anomalies associated with decreased Barents-Kara SIC.This study reveals the crucial effect that SIC anomalies in the Barents and Kara Seas have on winter dust activities over the TP.展开更多
The linkage between the sea ice concentration(SIC)over the Barents–Kara Seas in November–December(SIC_BKS_ND)and the stratospheric polar vortex(SPV)in subsequent January(SPV_Jan)is investigated.It is found that SIC_...The linkage between the sea ice concentration(SIC)over the Barents–Kara Seas in November–December(SIC_BKS_ND)and the stratospheric polar vortex(SPV)in subsequent January(SPV_Jan)is investigated.It is found that SIC_BKS_ND is positively(negatively)correlated with SPV_Jan for the period 1979–1995(1996–2009).Further analyses reveal that,during 1979–1995(1996–2009),SIC_BKS_ND is relatively higher(lower),accompanied by smaller(larger)interannual variability with its center shifting northwest(southeast).Meanwhile,the polar front jet waveguide is relatively stronger(weaker).The simultaneous anomalous eastward-propagating Rossby waves excited by anomalously low SIC_BKS_ND are stronger(weaker),which results in the stronger(weaker)negative–positive–negative wave-train structure of geopotential height anomalies over Eurasia,with the location of these anomalous height centers shifting remarkably westward(eastward).Such changes tend to enhance(suppress)vertically propagating tropospheric planetary waves into the lower stratosphere at high-latitude via constructive(destructive)interference of anomalous tropospheric wave-train structure with the climatological planetary waves,subsequently weakening(strengthening)SPV_Jan.However,in conjunction with anomalously high SIC_BKS_ND,the interference of the tropospheric wave-train structure anomalies and their climatologies shows an opposite distribution to that of low SIC_BKS_ND anomalies,which leads to a strong(weak)SPV_Jan anomaly during 1979–1995(1996–2009).展开更多
The Arctic sea ice cover has declined at an unprecedented pace since the late 20th century. As a result, the feedback of sea ice anomalies for atmospheric circulation has been increasingly evidenced. While climatic mo...The Arctic sea ice cover has declined at an unprecedented pace since the late 20th century. As a result, the feedback of sea ice anomalies for atmospheric circulation has been increasingly evidenced. While climatic models almost consistently reproduced a decreasing trend of sea ice cover, the reported results show a large distribution. To evaluate the performance of models for simulating Arctic sea ice cover and its potential role in climate change, this study constructed a reasonable metric by synthesizing both linear trends and anomalies of sea ice. This study particularly focused on the Barents Sea and the Kara Sea, where sea ice anomalies have the highest potential to affect the atmosphere. The investigated models can be grouped into three categories according to their normalized skill scores. The strong contrast among the multi-model ensemble means of different groups demonstrates the robustness and rationality of this method. Potential factors that account for the different performances of climate models are further explored. The results show that model performance depends more on the ozone datasets that are prescribed by the model rather than on the chemical representation of ozone.展开更多
The global wave model WAVEWATCH III®works well in open water.To simulate the propagation and attenuation of waves through ice-covered water,existing simulations have considered the influence of sea ice by adding ...The global wave model WAVEWATCH III®works well in open water.To simulate the propagation and attenuation of waves through ice-covered water,existing simulations have considered the influence of sea ice by adding the sea ice concentration in the wind wave module;however,they simply suppose that the wind cannot penetrate the ice layer and ignore the possibility of wind forcing waves below the ice cover.To improve the simulation performance of wind wave modules in the marginal ice zone(MIZ),this study proposes a parameterization scheme by directly including the sea ice thickness.Instead of scaling the wind input with the fraction of open water,this new scheme allows partial wind input in ice-covered areas based on the ice thickness.Compared with observations in the Barents Sea in 2016,the new scheme appears to improve the modeled waves in the high-frequency band.Sensitivity experiments with and without wind wave modules show that wind waves can play an important role in areas with low sea ice concentration in the MIZ.展开更多
Both planktonic and benthic foraminifera were identified in a sediment core collected from the northern Norwegian Sea to reconstruct the paleoceanographic evolution since the last glaciation.The assemblages and distri...Both planktonic and benthic foraminifera were identified in a sediment core collected from the northern Norwegian Sea to reconstruct the paleoceanographic evolution since the last glaciation.The assemblages and distribution patterns of dominant foraminiferal species with special habitat preferences indicated that three marine environments occurred in the northern Norwegian Sea since 62 ka BP:(1)an environment controlled by the circulation of the North Atlantic Current(NAC);(2)by polynya-related sinking of brines and upwelling of intermediate water surrounding the polynya;(3)by melt-water from Barents Sea Ice Sheet(BSIS).At 62-52.5 ka BP,a period with the highest summer insolation during the last glaciatial period,intensification of the NAC led to higher absolute abundances and higher diversity of foraminiferal faunas.The higher abundance of benthic species Cibicidoides wuellerstorfi indicates bottom water conditions that were well-ventilated with an adequate food supply;however,higher abundances of polar planktonic foraminiferal species Neogloboquadrina pachyderma(sin.)indicate that the near-surface temperatures were still low.During mid-late Marine Isotope Stage(MIS)3(52.5-29 ka BP),the marine environment of the northern Norwegian Sea alternately changed among the above mentioned three environments.At 29-17ka BP during the last glacial maximum,the dominant benthic species Bolivina arctica from the Arctic Ocean indicates an extreme cold bottom environment.The BSIS expanded to its maximum extent during this period,and vast polynya formed at the edge of the ice sheet.The sinking of brines from the formation of sea ice in the polynyas caused upwelling,indicated by the upwelling adapted planktonic species Globigerinita glutinata.At 17-10 ka BP,the northern Norwegian Sea was controlled by melt-water.With the ablation of BSIS,massive amounts of melt water discharged into the Norwegian Sea,resulting in strong water column stratification,poor ventilation,and an oligotrophic bottom condition,which ledto a drastic decline in the abundance and diversity of foraminifera.At 10-0 ka BP,the marine environment was transformed again by the control of the NAC,which continues to modern day.The abrupt decrease in relative abundance of Neogloboquadrina pachyderma(sin.)indicates a rise in near-surface temperature with the strengthening of the NAC and without the influence of the BSIS.展开更多
To assess the adiabaticity of acoustic propagation in the ocean is very important for acoustic field calculation(forward problem) and tomographic retrieving (inverse problem). A new criterion of adiabaticity is propos...To assess the adiabaticity of acoustic propagation in the ocean is very important for acoustic field calculation(forward problem) and tomographic retrieving (inverse problem). A new criterion of adiabaticity is proposed recently (Shang et al., 2001). In this paper, numerical simulation has been conducted for acoustic propagation through the Polar Front to verify the new criterion. Numerical results on the f (frequency) -m (mode number) plan demonstrate that the new criterion works very well for this extremely non-gradual ocean structure.展开更多
基金This study was supported jointly by the Project ZKCX2-SW-210the"National Key Programme for Developing Basic Sciences of China"(G1998040900)the National Natural Science Foundation of China under Grant No.40135020.
文摘Possible influences of the Barents Sea ice anomalies on the Eurasian atmospheric circulation and the East China precipitation distribution in the late spring and early summer (May-June) are investigated by analyzing the observational data and the output of an atmospheric general circulation model (AGCM). The study indicates that the sea ice condition of the Barents Sea from May to July may be interrelated with the atmospheric circulation of June. When there is more than average sea ice in the Barents Sea, the local geopotential height of the 500-hPa level will decrease, and the same height in the Lake Baikal and Okhotsk regions will increase and decrease respectively to form a wave-chain structure over North Eurasia. This kind of anomalous height pattern is beneficial to more precipitation in the south part of East China and less in the north.
基金supported by the National Natural Science Foundation of China[grant numbers 41375086 and 41775062]the National Natural Science Foundation of China[grant number 41630530]+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(CAS)supported by the Youth Innovation Promotion Association of CAS
文摘This study reveals a significant relationship, on the interannual timescale, between a dipole mode, the second leading mode, of spring sea-ice anomalies in the Barents Sea and the following-summer rainfall in East Asia. Related to the dipole mode, with the heavier sea ice in the north and lighter sea ice in the southeast Barents Sea in spring, the East Asian summer subtropical rainy belt tends to move northward. The significant relationship is established through a wave train over northern Eurasia in the lower troposphere in June. The wave train enhances the northern East Asian low, which induces more rainfall to the north of the East Asian subtropical rainy belt and then attracts the subtropical rainy belt to move northward. This study suggests that the dipole mode of spring sea-ice anomalies in the Barents Sea may be a good precursor for the prediction of East Asian summer rainfall.
基金The Basic Scientific Research Operation Fee of the Third Institute of Oceanography,the Ministry of Natural Resources under contract No.2018006the project of the Chinese Arctic and Antarctic Administration of the State Oceanic Administration under contract No.CHINARE2016-03-02the Shandong Provincial Natural Science Foundation under contract No.ZR2019BD054。
文摘The grain size distribution of bulk sediment samples was decomposed in a core to reconstruct paleoceanographic evolution over the past 60 ka in the northern Norwegian Sea.The results show that sediments consisted of 3–4 grain populations derived from the North Atlantic Current(NAC)and Barents Ice Sheet(BIS).The grain size data suggest three palaeoceanographic evolution stages:(1)an environment affected by BIS and NAC and changed with the interstadial/stadial transition in phase with the Greenland ice-core record at 60–31 ka BP,during which discharge of icebergs and the content of the coarsest population containing ice-rafted debris(IRD)in the sediments increased significantly during stadial,while the fine silt population containing volcanic glasses increased with the enhancement of NAC during the interstadial;(2)an extreme environment controlled by BIS at31–13 ka BP.BIS reached to its maximum at about 31 ka BP and the turbid plumes that formed at the leading edge of BIS contributed to a significant increase in the clayey population in sediments.Icebergs drained into the northern Norwegian Sea with periodical calving of the BIS at 31–19 ka BP.Subsequently,the ablation of the BIS discharged massive floods with clayey sediments and icebergs into the Norwegian Sea at 19–13 ka BP,resulting in a constant increase in clay and IRD in sediments;and(3)a marine environment similar to the present one under the strong influence of NAC following the complete melting of the BIS after 13 ka BP,NAC is the dominant transport agent and no IRD occurred in sediments.The fine silt populations containing volcanic glasses transported by NAC significantly increased.
基金The authors are very grateful to the two anonymous reviewers for their comments and suggestions.The monthly reanalysis data were provided by the ECMWF(http://apps.ecmwf.int/datasets)the monthly SST and sea ice data were provided by the Hadley Centre,United Kingdom(http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html)+2 种基金We thank the climate modeling groups attending CMIP5 for making their model output availableThe model data are available from the following website:http://cmip-pcmdi.llnl.gov/cmip5/data_portal.htmlThis work was supported by the Natural Science Foundation of China(Grant nos.41790475 and 41305064).
文摘This study investigated atmospheric responses in mid late winter and early spring to sea ice loss in the Barents and Kara seas using regressions of the January March mean atmosphere on Barents and Kara sea ice area in November and December.Similar atmospheric circulation responses were obtained from reanalysis data and multimodel ensemble results from the Coupled Model Intercomparison Project Phase 5,i.e.,sea ice anomalies are the dominant factor driving the overlying atmosphere.The results showed that an Arctic Asia dipole structure,with opposite anomalies over the mid-latitudes of Asia and over the adjoining Arctic,appears to be the key atmospheric circulation anomaly influencing the East Asian climate in mid late winter and early spring.
基金supported by the Russian Fund of Fundamental Research(Grant No.11-05-00280)
文摘New methods are presented for processing and interpretation of shallow marine differential magnetic data, including constructing maps of offshore total magnetic anomalies with an extremely high reso- lution of up to 1-2 nT, mapping weak anomalies of 5-10 nT caused by mineralization effects at the contacts of hydrocarbons with host rocks, estimating depths to upper and lower boundaries of anom- alous magnetic sources, and estimating thickness of magnetic layers and boundaries of tectonic blocks. Horizontal dimensions of tectonic blocks in the so-called "seismic gap" region in the central Kuril Arc vary from 10 to 100 km, with typical dimensions of 25-30 km. The area of the "seismic gap" is a zone of intense tectonic activity and recent volcanism. Deep sources causing magnetic anomalies in the area are similar to the "magnetic belt" near Hokkaido. In the southern and central parts of Barents Sea, tectonic blocks with widths of 30-100 kin, and upper and lower boundaries of magnetic layers ranging from depths of 10 to 5 km and 18 to 30 km are calculated. Models of the magnetic layer underlying the Mezen Basin in an inland part of the White Sea-Barents Sea paleorift indicate depths to the lower boundary of the layer of 12-30 km. Weak local magnetic anomalies of 2-5 nT in the northern and central Caspian Sea were identified using the new methods, and drilling confirms that the anomalies are related to concentrations of hydrocarbon. Two layers causing magnetic anomalies are identified in the northern Caspian Sea from magnetic anomaly spectra. The upper layer lies immediately beneath the sea bottom and the lower layer occurs at depths between 30-40 m and 150-200 m.
文摘This is the first report of the Barents Sea Ice Edge (BIE) project. The BIE position has varied between latitude 76<span style="white-space:nowrap;">°</span>N and above 82<span style="white-space:nowrap;">°</span>N during the last 440 years. During the period 10,000 to 6000 years ago, Arctic climate was significantly warmer than today. We review various oceanic and atmospheric factors that may have an effect on the BIE position. The Gulf Stream beat with respect to alternations in flow intensity and N-S distribution plays a central role for the changes in climate and BIE position during the last millennium. This occurred in combination with external forcing from total solar irradiation, Earth’s shielding strength, Earth’s geomagnetic field intensity, Earth’s rotation, jet stream changes;all factors of which are ultimately driven by the planetary beat on the Sun, the Earth and the Earth-Moon system. During the last 20 years, we see signs of changes and shifts that may signal the end of the late 20<sup>th</sup> century warm period. The BIE position is likely to start advancing southward in next decade.
文摘In the Arctic (mainly in its European sector) there is statistically detectable seasonal reversal wind pattern. The combination of seasonally warm (cold) land surfaces in arctic areas together with cool (cool) sea surface of Arctic seas not covered by ice is conducive to the formation of a monsoon like system. On the other hand, the predominance of the cyclonic regime during all seasons makes it difficult to answer the question of whether the Arctic region belongs to the monsoon type pattern. In this study, the monsoon features of atmospheric circulation over the Barents and Kara Seas were analysed. To extract specific monsoon signs, atmospheric circulation systems (separately for areas of each sea) were divided into ten weather types. Their appearance and statistics were compared with indicators of regional circulation. A significant part of intra-annual monsoon variability is associated with the configuration of such modes as the North Atlantic Oscillation and the <em>Scandinavia</em> teleconnection patterns. For example, during the winter season, the monsoon currents (from land to sea) occur only with a positive North Atlantic Oscillation index. With the prevalence of other modes of variability, the direction of the winds can be different, and the regular monsoon circulation pattern is changed by chaotic regime. In summer, northern streams (from sea to land) are realized on the western periphery of cyclones, regenerating and stabilizing over the Kara Sea. As for anomalies, the nature of the monsoons is manifested in the statistics of extreme winds even without selecting data on the regimes of variability. So, in winter, maximum speeds fall on the southern streams, and in the summer—on the northern ones. Large precipitation anomalies during all seasons, as one would expect, are encountered most often with the cyclonic type of circulation.
基金This research is funded by the Research Centre for Arctic Petroleum Explorationsupported by industry partners and the Research Council of Norway(Grant No.228107)+1 种基金partly financed by the Norwegian CCS Centrefinanced by the Research Council of Norway(Grant No.257579)。
文摘Marine controlled source electromagnetic(CSEM) data have been utilized in the past decade during petroleum exploration of the Barents Shelf, particularly for de-risking the highly porous sandstone reservoirs of the Upper Triassic to Middle Jurassic Realgrunnen Subgroup. In this contribution we compare the resistivity response from CSEM data to resistivity from wireline logs in both water-and hydrocarbon-bearing wells. We show that there is a very good match between these types of data, particularly when reservoirs are shallow. CSEM data, however, only provide information on the subsurface resistivity. Careful, geology-driven interpretation of CSEM data is required to maximize the impact on exploration success. This is particularly important when quantifying the relative resistivity contribution of high-saturation hydrocarbon-bearing sandstone and that of the overlying cap rock. In the presented case the cap rock comprises predominantly organic rich Upper Jurassic–Early Cretaceous shales of the Hekkingen Formation(i.e. a regional source rock). The resistivity response of the reservoir and its cap rock become merged in CSEM data due to the transverse resistance equivalence principle. As a result of this, it is imperative to understand both the relative contributions from reservoir and cap rock, and the geological significance of any lateral resistivity variation in each of the units. In this contribution, we quantify the resistivity of organic rich mudstone, i.e. source rock, and reservoir sandstones, using 131 exploration boreholes from the Barents Shelf. The highest resistivity(>10,000 Ωm) is evident in the hydrocarbon-bearing Realgrunnen Subgroup which is reported from 48 boreholes, 43 of which are used for this study. Pay zone resistivity is primarily controlled by reservoir quality(i.e. porosity and shale fraction) and fluid phase(i.e. gas, oil and water saturation).In the investigated wells, the shale dominated Hekkingen Formation exhibits enhanced resistivity compared to the background(i.e. the underlying and overlying stratigraphy), though rarely exceeds 20 Ωm. Marine mudstones typically show good correlation between measured organic richness and resistivity/sonic velocity log signatures.We conclude that the resistivity contribution to the CSEM response from hydrocarbon-bearing sandstones outweighs that of the organic rich cap rocks.
基金the Chinese Natural Science Foundation(Grant No.41941012)the Basic Scienti fic Fund for National Public Research Institute of China(ShuXingbei Young Talent Program)under contract No.2019S06,Shandong Provincial Natural Science Foundation(ZR2022JQ17)the Tais-han Scholars Program(No.tsqn202211264).
文摘Dramatic changes in the sea ice characteristics in the Barents Sea have potential consequences for the weather and climate systems of mid-latitude continents,Arctic ecosystems,and fisheries,as well as Arctic maritime navigation.Simulations and projections of winter sea ice in the Barents Sea based on the latest 41 climate models from the Coupled Model Intercomparison Project Phase 6(CMIP6)are investigated in this study.Results show that most CMIP6 models overestimate winter sea ice in the Barents Sea and underestimate its decreasing trend.The discrepancy is mainly attributed to the simulation bias towards an overly weak ocean heat transport through the Barents Sea Opening and the underestimation of its increasing trend.The methods of observation-based model selection and emergent constraint were used to project future winter sea ice changes in the Barents Sea.Projections indicate that sea ice in the Barents Sea will continue to decline in a warming climate and that a winter ice-free Barents Sea will occur for the first time during 2042-2089 under the Shared Socioeconomic Pathway 585(SSP5-8.5).Even in the observation-based selected models,the sensitivity of winter sea ice in the Barents Sea to global warming is weaker than observed,indicating that a winter ice-free Barents Sea might occur earlier than projected by the CMIP6 simulations.
基金supported by the Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes (Grant No.CHINARE04-04)the National Natural Science Foundation of China (Grant No.41406027)the NSFCShandong Joint Fund for Marine Science Research Centers (Grant No.U1406404)
文摘The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation(BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990–2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature(SAT)anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly,causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.
文摘We studied effects of sea surface temperature anomaly (SSTA) in the Barents Sea in autumn on the atmospheric circulation in northeast China in winter, using the NCEP reanalysis data and sea surface temperature (SST) data of the Hadley Center. The results show that the ocean thermal conditions in the Barents Sea in autumn can be used as an important reference factor for predicting the cold air activity in China. When the sea surface temperature anomaly of the Barents Sea elevated in the autumn, the sea-level pressure anomaly elevated in eastern China on December, northeast China and southeastern Russia on January and February. In the years when the SSTA of the Barents Sea elevated in the autumn, the abnormal high-pressure ridge developed over Europe, and the geopotential height in western China appeared negative anomaly at 500 hPa. At 1000 hPa, the Mongolia high-pressure increased and the northerly airflow strengthened the cold high-latitude air broke out to the south, which was easy to affect northeast and north of China. In negative SSTA years, the high-pressure ridge was west to the north Atlantic, and the geopotential height in central and northern Siberia appeared negative anomaly at 500 hPa;the Mongolia high-pressure was weakened at 1000 hPa.
文摘This is the second paper in a series of two, which analyze the position of the Barents Sea ice-edge (BIE) based on a 442-year long dataset to understand its time variations. The data have been collected from ship-logs, polar expeditions, and hunters in addition to airplanes and satellites in recent times. Our main result is that the BIE position alternates between a southern and a northern position followed by Gulf Stream Beats (GSBs) at the occurrence of deep solar minima. We decompose the low frequency BIE position variations in cycles composed of dominant periods which are related to the Jose period of 179 years, indicating planetary forcings. We propose that the mechanism transferring planetary signals into changes in BIE position is the solar wind (SW), which provides magnetic shielding of the Earth in addition to geomagnetic disturbances. Increase in the solar wind produces pressure which decelerates the Earth’s rotation. It also transfers electrical energy to the ring current in the earth’s magnetosphere. This current magnetizes the earth’s solid core and makes it rotate faster. To conserve angular momentum the earth’s outer fluid mantle rotates slower with a delay of about 100 years. In addition will geomagnetic storms, initiated by solar coronal mass ejections (CMEs) penetrate deep in the Earth’s atmosphere and change pressure pattern in the Arctic. This effect is larger during solar minima since the magnetic shielding then is reduced. The Arctic may then experience local warming. The transition of solar activities to a possibly deep and long minimum in the present century may indicate Arctic cooling and the BIE moving south this century. For the North Atlantic region, effects of the BIE expanding southward will have noticeable consequences for the ocean bio-production from about 2040.
基金This paper is supported by the National Key Program"96-908".
文摘By analyzing the observation data and performing the numerical simulation tests,it is shown that the Kara and the Barents Sea area is a key region to influence climate variation over the Northern Hemisphere.The variation of winter sea-ice area in the key region is closely associated with that of the EU teleconnection pattern at 500 hPa and East Asia winter monsoon(EAWM) intensity.When a heavy sea-ice prevails in the key region,the EU teleconnection pattern at 500 hPa is excited easily(there are positive 500 hPa height anomalies over around Japan and West Europe),and winter Siberia high is weakened,meanwhile,sea level pressure(SLP)has positive anomalies over the Northern Pacific.Therefore,EAWM will be weakened,winter temperature over East Asia is above normal and the frequency of cold-air activity in February in China will be decreased.When the light sea-ice occurs in the key region,the results will be opposite.
基金Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant 2019QZKK0103)National Natural Science Foundation of China(Grants 41790472,41805127)+1 种基金Youth Innovation Promotion Association Chinese Academy of Sciences(2020071,Chao You)Special Research Assistant Project of the Chinese Academy of Sciences(Chao Xu).
文摘The Tibetan Plateau(TP)is characterized by heavily local dust activities,however,the mechanism of interannual variations of winter dust frequency over the TP remain poorly understood.Previous studies showed the autumn Arctic sea ice could significantly influence the winter climate over Eurasia.Whether autumn sea ice affects winter dust activity over the TP or not?Here,we used an integrated surface database to investigate possible mechanisms for interannual variability in the frequency of winter dust events above the TP.This variability,which is thought to be mainly caused by local dust emissions,shows significant correlations with sea ice concentration(SIC)in the Barents and Kara Seas during the preceding autumn.Low Barents-Kara SIC is accompanied by reduced snow depth over northern Eurasia between autumn and winter,which can enhance the Eurasian mid-latitude westerly jet stream.This strengthening increases the cyclogenesis and occurrence of strong surface wind speeds in winter,especially over the TP.In addition,a lower SIC is closely associated with reduced precipitation and snow cover in late autumn and winter over the TP,which in turn enhances warming of the land surface and reduces the area of frozen ground.These anomalies in atmospheric circulation patterns and local surface conditions promote dust events above the TP during winter.The ensemble means of Atmospheric Model Intercomparison Project experiments from Phase 6 of the Coupled Model Inter-comparison Project and the Community Atmosphere Model version 4 can generally reproduce the atmospheric circulation anomalies associated with decreased Barents-Kara SIC.This study reveals the crucial effect that SIC anomalies in the Barents and Kara Seas have on winter dust activities over the TP.
基金Supported by the National Natural Science Foundation of China(41730964 and 42088101)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021001).
文摘The linkage between the sea ice concentration(SIC)over the Barents–Kara Seas in November–December(SIC_BKS_ND)and the stratospheric polar vortex(SPV)in subsequent January(SPV_Jan)is investigated.It is found that SIC_BKS_ND is positively(negatively)correlated with SPV_Jan for the period 1979–1995(1996–2009).Further analyses reveal that,during 1979–1995(1996–2009),SIC_BKS_ND is relatively higher(lower),accompanied by smaller(larger)interannual variability with its center shifting northwest(southeast).Meanwhile,the polar front jet waveguide is relatively stronger(weaker).The simultaneous anomalous eastward-propagating Rossby waves excited by anomalously low SIC_BKS_ND are stronger(weaker),which results in the stronger(weaker)negative–positive–negative wave-train structure of geopotential height anomalies over Eurasia,with the location of these anomalous height centers shifting remarkably westward(eastward).Such changes tend to enhance(suppress)vertically propagating tropospheric planetary waves into the lower stratosphere at high-latitude via constructive(destructive)interference of anomalous tropospheric wave-train structure with the climatological planetary waves,subsequently weakening(strengthening)SPV_Jan.However,in conjunction with anomalously high SIC_BKS_ND,the interference of the tropospheric wave-train structure anomalies and their climatologies shows an opposite distribution to that of low SIC_BKS_ND anomalies,which leads to a strong(weak)SPV_Jan anomaly during 1979–1995(1996–2009).
基金The National Natural Science Foundation of China under contract Nos 41576178 and 41630963the National Basic Research Program(973 program)of China under contract No.2015CB954004
文摘The Arctic sea ice cover has declined at an unprecedented pace since the late 20th century. As a result, the feedback of sea ice anomalies for atmospheric circulation has been increasingly evidenced. While climatic models almost consistently reproduced a decreasing trend of sea ice cover, the reported results show a large distribution. To evaluate the performance of models for simulating Arctic sea ice cover and its potential role in climate change, this study constructed a reasonable metric by synthesizing both linear trends and anomalies of sea ice. This study particularly focused on the Barents Sea and the Kara Sea, where sea ice anomalies have the highest potential to affect the atmosphere. The investigated models can be grouped into three categories according to their normalized skill scores. The strong contrast among the multi-model ensemble means of different groups demonstrates the robustness and rationality of this method. Potential factors that account for the different performances of climate models are further explored. The results show that model performance depends more on the ozone datasets that are prescribed by the model rather than on the chemical representation of ozone.
基金funded by the National Key R&D Program of China (Grant No. 2022YFE0106300)the National Natural Science Foundation of China (Grant Nos. 41922044, 42106226 and 42106233)+4 种基金the Fundamental Research Funds for the Central Universities (Grant No. 3132023133)the China Postdoctoral Science Foundation (Grant No. 2020M683022)the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515020025)the fundamental research funds for the Norges Forskningsråd. (Grant No. 328886)the Research Council of Norway for financial support through the research project “Multi-scale integration and digitalization of Arctic sea ice observations and predic tion models (328960)” and basic funding for research institutes
文摘The global wave model WAVEWATCH III®works well in open water.To simulate the propagation and attenuation of waves through ice-covered water,existing simulations have considered the influence of sea ice by adding the sea ice concentration in the wind wave module;however,they simply suppose that the wind cannot penetrate the ice layer and ignore the possibility of wind forcing waves below the ice cover.To improve the simulation performance of wind wave modules in the marginal ice zone(MIZ),this study proposes a parameterization scheme by directly including the sea ice thickness.Instead of scaling the wind input with the fraction of open water,this new scheme allows partial wind input in ice-covered areas based on the ice thickness.Compared with observations in the Barents Sea in 2016,the new scheme appears to improve the modeled waves in the high-frequency band.Sensitivity experiments with and without wind wave modules show that wind waves can play an important role in areas with low sea ice concentration in the MIZ.
基金funded by the Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources(Grant no.2018006)Shandong Provincial Natural Science Foundation(Grant no.ZR2019BD054)the project of the Chinese Arctic and Antarctic Administration,State Oceanic Administration(Grant no.CHINARE 2016-03-02).
文摘Both planktonic and benthic foraminifera were identified in a sediment core collected from the northern Norwegian Sea to reconstruct the paleoceanographic evolution since the last glaciation.The assemblages and distribution patterns of dominant foraminiferal species with special habitat preferences indicated that three marine environments occurred in the northern Norwegian Sea since 62 ka BP:(1)an environment controlled by the circulation of the North Atlantic Current(NAC);(2)by polynya-related sinking of brines and upwelling of intermediate water surrounding the polynya;(3)by melt-water from Barents Sea Ice Sheet(BSIS).At 62-52.5 ka BP,a period with the highest summer insolation during the last glaciatial period,intensification of the NAC led to higher absolute abundances and higher diversity of foraminiferal faunas.The higher abundance of benthic species Cibicidoides wuellerstorfi indicates bottom water conditions that were well-ventilated with an adequate food supply;however,higher abundances of polar planktonic foraminiferal species Neogloboquadrina pachyderma(sin.)indicate that the near-surface temperatures were still low.During mid-late Marine Isotope Stage(MIS)3(52.5-29 ka BP),the marine environment of the northern Norwegian Sea alternately changed among the above mentioned three environments.At 29-17ka BP during the last glacial maximum,the dominant benthic species Bolivina arctica from the Arctic Ocean indicates an extreme cold bottom environment.The BSIS expanded to its maximum extent during this period,and vast polynya formed at the edge of the ice sheet.The sinking of brines from the formation of sea ice in the polynyas caused upwelling,indicated by the upwelling adapted planktonic species Globigerinita glutinata.At 17-10 ka BP,the northern Norwegian Sea was controlled by melt-water.With the ablation of BSIS,massive amounts of melt water discharged into the Norwegian Sea,resulting in strong water column stratification,poor ventilation,and an oligotrophic bottom condition,which ledto a drastic decline in the abundance and diversity of foraminifera.At 10-0 ka BP,the marine environment was transformed again by the control of the NAC,which continues to modern day.The abrupt decrease in relative abundance of Neogloboquadrina pachyderma(sin.)indicates a rise in near-surface temperature with the strengthening of the NAC and without the influence of the BSIS.
文摘To assess the adiabaticity of acoustic propagation in the ocean is very important for acoustic field calculation(forward problem) and tomographic retrieving (inverse problem). A new criterion of adiabaticity is proposed recently (Shang et al., 2001). In this paper, numerical simulation has been conducted for acoustic propagation through the Polar Front to verify the new criterion. Numerical results on the f (frequency) -m (mode number) plan demonstrate that the new criterion works very well for this extremely non-gradual ocean structure.