期刊文献+
共找到227,136篇文章
< 1 2 250 >
每页显示 20 50 100
Iron-handling solute carrier SLC22A17 as a blood-brain barrier target after stroke
1
作者 Xueqi Ren Wenlu Li 《Neural Regeneration Research》 SCIE CAS 2025年第11期3207-3208,共2页
The pathophysiology of ischemic stroke is complex and multifactorial,involving various forms of cell death such as apoptosis,autophagy,and necrosis.A recent study suggests that oxidative and inflammatory stress can in... The pathophysiology of ischemic stroke is complex and multifactorial,involving various forms of cell death such as apoptosis,autophagy,and necrosis.A recent study suggests that oxidative and inflammatory stress can induce ferroptosis,a specialized form of cell death characterized by the accumulation of lipid peroxides dependent on intracellular iron overload(Li and Jia,2023). 展开更多
关键词 DEATH specialized barrier
下载PDF
Beyond wrecking a wall:revisiting the concept of blood–brain barrier breakdown in ischemic stroke
2
作者 Julia Castillo-González Elena González-Rey 《Neural Regeneration Research》 SCIE CAS 2025年第7期1944-1956,共13页
The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting... The blood–brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation.It tightly modulates the ion transport and nutrient influx,while restricting the entry of harmful factors,and selectively limiting the migration of immune cells,thereby maintaining brain homeostasis.Despite the well-established association between blood–brain barrier disruption and most neurodegenerative/neuroinflammatory diseases,much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown.Moreover,the role of blood–brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood.This review aims to revisit this concept of“blood–brain barrier breakdown,”delving into the most controversial aspects,prevalent challenges,and knowledge gaps concerning the lack of blood–brain barrier integrity.By moving beyond the oversimplistic dichotomy of an“open”/“bad”or a“closed”/“good”barrier,our objective is to provide a more comprehensive insight into blood–brain barrier dynamics,to identify novel targets and/or therapeutic approaches aimed at mitigating blood–brain barrier dysfunction.Furthermore,in this review,we advocate for considering the diverse time-and location-dependent alterations in the blood–brain barrier,which go beyond tight-junction disruption or brain endothelial cell breakdown,illustrated through the dynamics of ischemic stroke as a case study.Through this exploration,we seek to underscore the complexity of blood–brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases. 展开更多
关键词 blood–brain barrier disruption drug delivery ischemic stroke NEUROINFLAMMATION tight-junctions
下载PDF
Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis
3
作者 Conglin Wang Fangyuan Cheng +9 位作者 Zhaoli Han Bo Yan Pan Liao Zhenyu Yin Xintong Ge Dai Li Rongrong Zhong Qiang Liu Fanglian Chen Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第2期518-532,共15页
Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)... Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes. 展开更多
关键词 AKT AsTROCYTE blood-brain barrier cerebral edema EXOsOMEs human-induced pluripotent stem cells intracerebral hemorrhage neural stem cells NEUROINFLAMMATION PI3K
下载PDF
Interaction of major facilitator superfamily domain containing 2A with the blood-brain barrier
4
作者 Yilun Ma Taiwei Dong +3 位作者 Fei Luan Juanjuan Yang Feng Miao Peifeng Wei 《Neural Regeneration Research》 SCIE CAS 2025年第8期2133-2152,共20页
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the bloo... The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized.This review may contribute to the development of new approaches for the treatment of neurological diseases. 展开更多
关键词 blood-brain barrier(BBB) caveolin-1 central nervous system docosahexaenoic acid endothelial cells LYsOPHOsPHATIDYLCHOLINE major facilitator superfamily domain containing 2A(MFsD2A) TRANsCYTOsIs
下载PDF
Rebuilding insight into the pathophysiology of Alzheimer’s disease through new blood-brain barrier models 被引量:2
5
作者 Kinya Matsuo Hideaki Nshihara 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1954-1960,共7页
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neur... The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research. 展开更多
关键词 Alzheimer’s disease blood-brain barrier human induced pluripotent stem cells
下载PDF
Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease 被引量:6
6
作者 Aritoshi Koizumi Kosuke Kaji +10 位作者 Norihisa Nishimura Shohei Asada Takuya Matsuda Misako Tanaka Nobuyuki Yorioka Yuki Tsuji Koh Kitagawa Shinya Sato Tadashi Namisaki Takemi Akahane Hitoshi Yoshiji 《World Journal of Gastroenterology》 SCIE CAS 2024年第28期3428-3446,共19页
BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome prolifer... BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function. 展开更多
关键词 Liver fibrosis ETHANOL Gut barrier function Apoptosis AUTOPHAGY Peroxisome proliferator activated receptor
下载PDF
Astrocytes dynamically regulate the blood-brain barrier in the healthy brain 被引量:1
7
作者 AgnėPociūtė Augustas Pivoriūnas Alexei Verkhratsky 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期709-710,共2页
The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervo... The blood-brain barrier(BBB)(discovered and defined by Max Lewandowsky and Lina Stern,and not,as it is universally,and yet erroneously believed,by Paul Ehrlich(Verkhratsky and Pivoriunas,2023))that separates the nervous system from the circulation is evolutionarily conserved from arthropods to man.The primeval BBB of the invertebrates and some early vertebrates was made solely by glial cells and secured(in invertebrates)by septate junctions. 展开更多
关键词 Ehrlich barrier BLOOD
下载PDF
Activation of the wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions 被引量:9
8
作者 Xingyong Chen Nannan Yao +4 位作者 Yanguang Mao Dongyun Xiao Yiyi Huang Xu Zhang Yinzhou Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1541-1547,共7页
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok... Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury. 展开更多
关键词 blood-brain barrier CYP1B1 oxidative stress oxygen glucose deprivation/reoxygenation tight junction vascular endothelial cells Wnt/β-catenin pathway β-catenin
下载PDF
Analysis of current status of and barriers to exercise participation among patients on maintenance hemodialysis
9
作者 Xin TIAN Xiuli LI Jianhua DENG 《Journal of Integrative Nursing》 2024年第2期96-102,共7页
Objective:The objective of this study was to analyze the current status of barriers to exercise participation(EP)among patients on maintenance hemodialysis(MHD).Materials and Methods:A cross-sectional study was conduc... Objective:The objective of this study was to analyze the current status of barriers to exercise participation(EP)among patients on maintenance hemodialysis(MHD).Materials and Methods:A cross-sectional study was conducted on 277 outpatients undergoing MHD in 2 tertiary first-class hospitals in Beijing from February 2023 to June 2023 who were selected using convenience sampling method.The data of patients on MHD were collected using the general information questionnaire,Physical Activity Rating Scale,Exercise Benefits/Barriers Scale(EBBS),and Exercise Self-Efficacy Scale(ESES).The relationship between EP and barriers to EP was analyzed through univariate and multivariate linear regression models.Results:Patients on MHD had a low exercise volume score of 13.71±0.68 points and a medium EBBS score of 63.36±0.40 points.Multivariate logistic analysis showed that exercise volume was significantly related to the following four aspects,including low monthly household income per capita(odds ratio[OR]=86.741,95%confidence interval[CI][1.164-6.465],P=0.042),primary underlying disease of diabetic nephropathy(OR=45.993,95%CI[1.353-1.564],P=0.033),the belief that“fatigue in lower extremities hinders exercise”(OR=4.697,95%CI[1.127-19.585],P=0.034),and the belief that“physical exercise bringing optimistic and positive life attitude”(OR=0.074,95%CI[0.007-0.830],P=0.035).Conclusions:Since patients on MHD had low physical exercise volume,the health-care provider should pay more attention on the controllable factors that affect the EP of patients on MHD.Therefore,feasible and effective intervention measures can be formulated based on ESES in clinical nursing. 展开更多
关键词 barrier(s) exercise rehabilitation EXERCIsE maintenance hemodialysis physical activity renal dialysis
下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles 被引量:1
10
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier Numerical simulation Windproof efficiency sedimentation erosion
下载PDF
Post-acute ischemic stroke hyperglycemia aggravates destruction of the blood-brain barrier 被引量:1
11
作者 Tianqi Xu Jianhong Yang +5 位作者 Yao Xu Xiaofeng Wang Xiang Gao Jie Sun Chenhui Zhou Yi Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1344-1350,共7页
Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the bloo... Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation,which is associated with blood-brain barrier disruption.Brain microvascular endothelial cells are a major component of the blood-brain barrier.Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction.In this study,we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells,and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells.We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells.However,post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction.We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier.We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier.In a clinical study,we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation.We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation.These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer. 展开更多
关键词 acute ischemic stroke blood-brain barrier brain microvascular endothelial cells mitochondrial transfer stress hyperglycemia
下载PDF
Blood-brain barrier pathology in cerebral small vessel disease 被引量:5
12
作者 Ruxue Jia Gemma Solé-Guardia Amanda J.Kiliaan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1233-1240,共8页
Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is no... Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions. 展开更多
关键词 blood-brain barrier dysfunction cerebral blood flow cerebral hypoperfusion endothelial dysfunction HYPERTENsION inflammation magnetic resonance imaging neurovascular unit oxidative stress small vessel disease tight junctions TRANsCYTOsIs
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
13
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Breaking the brain barrier:cell competition in neural development and disease
14
作者 Patrizia Morciano Daniela Grifoni 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1863-1864,共2页
General information on cell competition:Social behaviors are the basis of biological life.Like species and populations,cell communities experience Darwinian ecological interactions,and in case space and nutrient avail... General information on cell competition:Social behaviors are the basis of biological life.Like species and populations,cell communities experience Darwinian ecological interactions,and in case space and nutrient availability are not uniform throughout the tissue,they begin to compete for ground occupancy. 展开更多
关键词 NEURAL barrier THROUGHOUT
下载PDF
Damage on intestinal barrier function and microbial detoxification of deoxynivalenol:A review
15
作者 Jia Chen Xinran Zhang +2 位作者 Ziqi He Dongwei Xiong Miao Long 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2507-2524,共18页
Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrati... Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health. 展开更多
关键词 deoxynivalenol(DON) intestinal barrier function mucus barrier immune function flora composition biological detoxification
下载PDF
Psychosocial and Socioeconomic Barriers to Treatment Adherence in Pediatric Atopic Dermatitis
16
作者 Kelly Frasier Darianne Zimmer +7 位作者 Grace Herrick Marissa Ruppe Mahnoor Mukarram Bret-Ashleigh Coleman Madeline Coleman Therese Anne Limbana Brooke Blan Evadne Rodriguez 《Open Journal of Medical Psychology》 2024年第4期87-102,共16页
Research Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition in children that significantly impacts physical health and quality of life. Adherence to treatment regimens is crucial for effective... Research Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition in children that significantly impacts physical health and quality of life. Adherence to treatment regimens is crucial for effective disease management but is often hindered by various psychosocial and socioeconomic barriers. Parental mental health issues, family dynamics, financial constraints, and limited access to specialized care contribute to inconsistent treatment adherence, exacerbating the condition. Purpose/Aim: The aim of this study is to explore the multifaceted barriers to treatment adherence in children with AD and evaluate the effectiveness of current interventions targeting these challenges. The study seeks to identify strategies that can improve adherence and health outcomes by addressing psychosocial and socioeconomic factors. Method: The method involves a comprehensive review of existing literature on the impact of psychosocial and socioeconomic factors on treatment adherence in children with AD. The study also examines various interventions designed to address these barriers, including community support programs, family-centered interventions, financial aid, integrated care models, and telehealth solutions. Results: Results indicate that psychosocial barriers, such as parental anxiety and depression, significantly hinder effective disease management. Family dynamics, including poor communication and single-parent households, complicate adherence efforts. Socioeconomic factors, such as financial constraints and limited healthcare access, further impede adherence. Interventions that address these barriers show promise in improving treatment adherence and health outcomes. Community support programs and family-centered interventions enhance parental mental health and family communication. Financial aid programs and integrated care models help mitigate economic and logistical challenges. Telehealth solutions improve access to specialized care, particularly in underserved areas. Conclusion: The study concludes that a holistic approach integrating medical treatment with psychosocial and socioeconomic support is essential for managing pediatric AD effectively. Policy recommendations include increased funding for community support programs, expanded telehealth services, and the integration of social services with medical care. Addressing these barriers comprehensively can enhance treatment adherence and improve the quality of life for children with AD. Further research should focus on long-term outcomes and diverse populations to refine these interventions and ensure they meet the needs of all affected children. 展开更多
关键词 Pediatric Atopic Dermatitis Treatment Adherence Psychosocial barriers socioeconomic barriers
下载PDF
Establishment of a chicken intestinal organoid culture system to assess deoxynivalenol‑induced damage of the intestinal barrier function
17
作者 Tae Hong Kang Sang In Lee 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1119-1130,共12页
Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.S... Background Deoxynivalenol(DON)is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay,nutrient malabsorption,weight loss,emesis,and a reduction of feed intake in livestock.Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract,we used chicken organoids to assess the DON-induced dysfunction of the small intestine.Results We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10.We confirmed the mRNA expression levels of various cell markers in the organoids,such as KI67,leucine-rich repeat containing G protein-coupled receptor 5(Lgr5),mucin 2(MUC2),chromogranin A(CHGA),cytokeratin 19(CK19),lysozyme(LYZ),and microtubule-associated doublecortin-like kinase 1(DCLK1),and compared the results to those of the small intestine.Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine.DON damaged the tight junctions of the organoids,which resulted in increased permeability.Conclusions Our organoid culture displayed topological,genetic,and functional similarities with the small intes-tine cells.Based on these similarities,we confirmed that DON causes small intestine dysfunction.Chicken organoids offer a practical model for the research of harmful substances. 展开更多
关键词 barrier function DEOXYNIVALENOL ORGANOIDs
下载PDF
Retinol is involved in the intestinal regeneration and strengthens the intestinal barrier during refeeding in broiler chickens
18
作者 Youli Wang Huajin Zhou +4 位作者 Jing Chen Yuqin Wu Yuming Guo Bo Wang Jianmin Yuan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第11期3843-3859,共17页
Fasting is typically used before feeding metabolizable energy assessment in broilers.Previous studies have shown that fasting cause atrophy of the intestinal villus.Whether fasting affects intestinal permeability duri... Fasting is typically used before feeding metabolizable energy assessment in broilers.Previous studies have shown that fasting cause atrophy of the intestinal villus.Whether fasting affects intestinal permeability during refeeding by altering barrier function and nutrient absorption is of concern.Here,23-d-old broilers were randomly assigned to 5 treatments,fasted for 0,12,24,36,and 48 h,respectively,and then refed for 2 d,to study the impact of different duration of fasting on the intestinal regeneration and barrier function during refeeding.Results showed that the intestinal morphology in fasted birds was recovered in 2 d of refeeding at most.As fasting durations increased,enterocytes per intestinal villus were linearly and quadratically increased(both P<0.05),whereas goblet cells per intestinal villus was linearly decreased(both P<0.05).Besides,the mRNA level of lysozyme was linearly decreased as fasting durations increased during refeeding(both P<0.05),while quadratically increased mucin 2 was observed only after 1 d of refeeding(P<0.05).Linear increase effects were observed for claudin 2 and zonula occludens-1with increased fasting durations after 1 d of refeeding(all P<0.05),and linear and quadratical effects were observed for claudin 2 at 2 d of refeeding(both P<0.05).Besides,we found that intestinal permeability to creatinine,4 and 70 kD dextran were linearly and quadratically decreased with increased fasting durations at 6 h and 1 d of refeeding(all P<0.05).Furthermore,jejunum proteomic from birds refed for 6 h showed that birds fasted for 36 h showed increased antimicrobial peptides and upregulated retinol metabolism when compared to the nonfasted birds(P<0.05).Further study showed that retinyl ester catabolism was inhibited during fasting and enhanced during refeeding.Results of intestinal organoid culture showed that retinol benefits the cell proliferation and enterocyte differentiation.In conclusion,the intestinal permeability to small and large molecules was decreased during refeeding by strengthening the intestinal barrier function,and the activated retinol metabolism during refeeding is involved in the intestinal regeneration and strengthens the intestinal barrier. 展开更多
关键词 broiler chicken FAsTING intestinal barrier intestinal permeability RETINOL
下载PDF
High-temperature corrosion of sintered RE_(2)Si_(2)O_(7)(RE=Yb and Ho)environmental barrier coating materials by volcanic ash
19
作者 Ayahisa Okawa Son Thanh Nguyen +7 位作者 Tadachika Nakayama Thi-Mai-Dung Do Hisayuki Suematsu Shu Yin Takuya Hasegawa Tsuneo Suzuki Takashi Goto Koichi Niihara 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1628-1638,共11页
Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EB... Rare-earth silicates are promising environmental barrier coatings(EBCs)that can protect SiC_(f)/Si C_(m)substrates in next-genera tion gas turbine blades.Notably,RE_(2)Si_(2)O_(7)(RE=Yb and Ho)shows potential as an EBC due to its coefficient of thermal expansion(CTE)compatible with substrates and high resistance to water vapor corrosion.The target operating temperature for next-generation tur bine blades is 1400°C.Corrosion is inevitable during adhesion to molten volcanic ash,and thus,understanding the corrosion behavior o the material is crucial to its reliability.This study investigates the high-temperature corrosion behavior of sintered RE_(2)Si_(2)O_(7)(RE=Yb and Ho).Samples were prepared using a solid-state reaction and hot-press method.They were then exposed to volcanic ash at 1400°C for 224,and 48 h.After 48 h of exposure,volcanic ash did not react with Yb_(2)Si_(2)O_(7)but penetrated its interior,causing damage.Meanwhile Ho_(2)Si_(2)O_(7)was partially dissolved in the molten volcanic ash,forming a reaction zone that prevented volcanic ash melts from penetrating the interior.With increasing heat treatment time,the reaction zone expanded,and the thickness of the acicular apatite grains increased The Ca:Si ratios in the residual volcanic ash were mostly unchanged for Yb_(2)Si_(2)O_(7)but decreased considerably over time for Ho_(2)Si_(2)O_(7).Th Ca in volcanic ash was consumed and formed apatite,indicating that RE^(3+)ions with large ionic radii(Ho>Yb)easily precipitated apatit from the volcanic ash. 展开更多
关键词 environmental barrier coating volcanic ash rare-earth disilicate CORROsION
下载PDF
Dissolvable temporary barrier:a novel paradigm for flexible hydrogel patterning in organ-on-a-chip models
20
作者 Ding Wang Qinyu Li +5 位作者 Chenyang Zhou Zhangjie Li Kangyi Lu Yijun Liu Lian Xuan Xiaolin Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期153-166,共14页
A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled... A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional(3D)tissue models in vitro,which are also known as organ-on-a-chipmodels.The hydrogel patterningwith awell-controlled spatial distribution is typically achieved by embedding sophisticated microstructures to act as a boundary.However,these physical barriers inevitably expose cells/tissues to a less physiologically relevant microenvironment than in vivo conditions.Herein,we present a novel dissolvable temporary barrier(DTB)strategy that allows robust and flexible hydrogel patterning with great freedom of design and desirable flow stimuli for cellular hydrogels.The key aspect of this approach is the patterning of a water-soluble rigid barrier as a guiding path for the hydrogel using stencil printing technology,followed by a barrier-free medium perfusion after the dissolution of the DTB.Single and multiple tissue compartments with different geometries can be established using either straight or curved DTB structures.The effectiveness of this strategy is further validated by generating a 3D vascular network through vasculogenesis and angiogenesis using a vascularized microtumor model.As a new proof-of-concept in vasculature-on-a-chip,DTB enables seamless contact between the hydrogel and the culture medium in closed microdevices,which is an improved protocol for the fabrication ofmultiorgan chips.Therefore,we expect it to serve as a promising paradigm for organ-on-a-chip devices for the development of tumor vascularization and drug evaluation in the future preclinical studies. 展开更多
关键词 Dissolvable temporary barrier Hydrogel patterning Microfluidics Organ-on-a-chip Vascularization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部