A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.5...A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.展开更多
Reliable transport of Campylobocter jejuni isolates is critical to microbial epidemiology research, especially in developing countries without a good temperature control mailing system. Various factors, including oxyg...Reliable transport of Campylobocter jejuni isolates is critical to microbial epidemiology research, especially in developing countries without a good temperature control mailing system. Various factors, including oxygen, temperature, transport medium composition, could affect the survival of C jejunL In this study, the protective effects of different ingredients in C. jejuni transport media at 4 ℃ and 25 ℃ and under aerobic condition were quantitatively evaluated respectively. The results showed that enriched medium, supplementation with 5% blood and being kept at 4 ℃ could improve the viability of different C. jejuni strains during transport. In addition, supplementation with 25 mmol/L L-fucose in Wang's transport medium could significantly improve the survival of C.展开更多
The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to ...The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.展开更多
An operational backbone network is connected with many routers and other devices. Identifying faults in the network is very difficult, so a fault localization mechanism is necessary to identify fault and alleviate it ...An operational backbone network is connected with many routers and other devices. Identifying faults in the network is very difficult, so a fault localization mechanism is necessary to identify fault and alleviate it and correct the faults in order to reduce the network performance degradation. A risk model needs to be devised based on the dynamic database by creating alternate path and the network is reconfigured by identifying dynamic paths. In this paper, an on-demand link state routing approach is used for handling failures in IP backbone networks and a localization algorithm is used to improve QOS parameters based on threshold value of gateway. It is proved that on-demand link state routing guarantees loop-free forwarding to reachable destinations regardless of the number of failures in the network, and in case of localization algorithm using modification process packet loss is avoided based on threshold value of gateway. Heuristic algorithm is also used for reconfiguration of dynamic path for effective fault localization. In this paper, in order to change the traffic condition, reconfiguration strategic is dynamically used. Dijikstra’s shortest path algorithm has been used to determine the shortest path between node pairs. Using risk modeling mechanism, a small set of candidate faults is identified. The concept of Fault Localization is used to minimize the fault occurring in the node and sends original path to node pairs. The localization algorithm based on MODIFICATION PROCESS, packet loss is avoided in the network by checking threshold value of gateway. If the threshold value is maximum, router directly forwards the packet to destination through gateway and if the threshold value is minimum, router compresses the packet and forwards the packet to destination with notification via gateway.展开更多
The Human Genome Project opened an era of(epi)genomic research,and also provided a platform for the development of new sequencing technologies.During and after the project,several sequencing technologies continue to d...The Human Genome Project opened an era of(epi)genomic research,and also provided a platform for the development of new sequencing technologies.During and after the project,several sequencing technologies continue to dominate nucleic acid sequencing markets.Currently,Illumina(short-read),PacBio(long-read),and Oxford Nanopore(longread)are the most popular sequencing technologies.Unlike PacBio or the popular short-read sequencers before it,which,as examples of the second or so-called Next-Generation Sequencing platforms,need to synthesize when sequencing,nanopore technology directly sequences native DNA and RNA molecules.Nanopore sequencing,therefore,avoids converting mRNA into cDNA molecules,which not only allows for the sequencing of extremely long native DNA and full-length RNA molecules but also document modifications that have been made to those native DNA or RNA bases.In this review on direct DNA sequencing and direct RNA sequencing using Oxford Nanopore technology,we focus on their development and application achievements,discussing their challenges and future perspective.We also address the problems researchers may encounter applying these approaches in their research topics,and how to resolve them.展开更多
基金supported by the National Natural Science Foundation of China(21372087)~~
文摘A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.
基金supported by grant(2012AA101603)from the Ministry of Science Technologygrant(2011X7)from the National Institute of Food and Drug Controlgrant(81102131)from the National Natural Science Foundation of China
文摘Reliable transport of Campylobocter jejuni isolates is critical to microbial epidemiology research, especially in developing countries without a good temperature control mailing system. Various factors, including oxygen, temperature, transport medium composition, could affect the survival of C jejunL In this study, the protective effects of different ingredients in C. jejuni transport media at 4 ℃ and 25 ℃ and under aerobic condition were quantitatively evaluated respectively. The results showed that enriched medium, supplementation with 5% blood and being kept at 4 ℃ could improve the viability of different C. jejuni strains during transport. In addition, supplementation with 25 mmol/L L-fucose in Wang's transport medium could significantly improve the survival of C.
文摘The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.
文摘An operational backbone network is connected with many routers and other devices. Identifying faults in the network is very difficult, so a fault localization mechanism is necessary to identify fault and alleviate it and correct the faults in order to reduce the network performance degradation. A risk model needs to be devised based on the dynamic database by creating alternate path and the network is reconfigured by identifying dynamic paths. In this paper, an on-demand link state routing approach is used for handling failures in IP backbone networks and a localization algorithm is used to improve QOS parameters based on threshold value of gateway. It is proved that on-demand link state routing guarantees loop-free forwarding to reachable destinations regardless of the number of failures in the network, and in case of localization algorithm using modification process packet loss is avoided based on threshold value of gateway. Heuristic algorithm is also used for reconfiguration of dynamic path for effective fault localization. In this paper, in order to change the traffic condition, reconfiguration strategic is dynamically used. Dijikstra’s shortest path algorithm has been used to determine the shortest path between node pairs. Using risk modeling mechanism, a small set of candidate faults is identified. The concept of Fault Localization is used to minimize the fault occurring in the node and sends original path to node pairs. The localization algorithm based on MODIFICATION PROCESS, packet loss is avoided in the network by checking threshold value of gateway. If the threshold value is maximum, router directly forwards the packet to destination through gateway and if the threshold value is minimum, router compresses the packet and forwards the packet to destination with notification via gateway.
基金supported by the Key-Areas Research and Development Program of Guangdong Province(2020B020220004)the Youth Innovation Promotion Association,Chinese Academy of Sciences(2017399)+2 种基金the Science and Technology Program of Guangzhou(202002030097)the Hong Kong Research Grants Council Area of Excellence Scheme(AoE/M-403/16),the ECS(27204518)TRS of the HKSAR government(T21-705/20-N).
文摘The Human Genome Project opened an era of(epi)genomic research,and also provided a platform for the development of new sequencing technologies.During and after the project,several sequencing technologies continue to dominate nucleic acid sequencing markets.Currently,Illumina(short-read),PacBio(long-read),and Oxford Nanopore(longread)are the most popular sequencing technologies.Unlike PacBio or the popular short-read sequencers before it,which,as examples of the second or so-called Next-Generation Sequencing platforms,need to synthesize when sequencing,nanopore technology directly sequences native DNA and RNA molecules.Nanopore sequencing,therefore,avoids converting mRNA into cDNA molecules,which not only allows for the sequencing of extremely long native DNA and full-length RNA molecules but also document modifications that have been made to those native DNA or RNA bases.In this review on direct DNA sequencing and direct RNA sequencing using Oxford Nanopore technology,we focus on their development and application achievements,discussing their challenges and future perspective.We also address the problems researchers may encounter applying these approaches in their research topics,and how to resolve them.