This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(V...This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.展开更多
Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research h...Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research has been conducted on this subject. In this study, we used generalized additive models(GAMs) to explore the influence of spatial-temporal and environmental factors on CPUEs of species aggregated, small yellow croaker(Larimichthys polyactis), and octopus(Octopus variabilis) based on logbooks investigations conducted at 4 stations in an alongshore area of Haizhou Bay from 2011 to 2012. The results showed that all CPUEs exhibited significant spatial-temporal differences at various scales. Aggregated CPUE was high when the sea surface temperature(SST) was 15-18℃ and 20-23℃, which was mainly determined by life history traits of the octopus and small yellow croaker(optimal SSTs 14-17℃ and 19-24℃, respectively). Chlorophyll-a concentration had significant influences on the aggregated, small yellow croaker and octopus CPUEs at optimal ranges of 3.8-6.2 mg m^(-3), 4.2-4.8 mg m^(-3) and 4.5-5.5 mg m^(-3), respectively. Flow through the net had positive relationships with CPUEs. The approximate logarithmic trends in regression curves had a critical point of 2.5 Mm^3 d^(-1), which was the dividing point that differentiated whether the major factor affecting CPUEs was the flow velocity or the fishery resource. Our results from this study will help guide fishery production and improve catch rate of set-net fishing in Haizhou Bay.展开更多
Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that t...Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that the proposed EB decision rules are asymptotically optimal with convergence rates near O(n-1/2). Finally, an example concerning the main result is given.展开更多
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares...In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.展开更多
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surround...Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.展开更多
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies...The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies. This is based on the solution of an inverse generalized evaluate problem. The stochastic nature of test data is considered and a normal distribution is used for the measurement frequencies. An additional feature is that the engineer's confidence in the measurement frequencies is quantified and incorporated into the identification procedure. A numerical example demonstrates the efficiency of the method.展开更多
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n...In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.展开更多
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the gro...The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the growth,interaction,as well as linkage of new fault segments.This study analyses a complex multi-phase oblique extension fault system in the Nanpu Sag(NPS)of the Bohai Bay Basin(BBB),China.High-resolution three-dimensional(3D)seismic data and analogue modelling indicate that the oblique extensional reactivation of pre-existing structures governs the sequential arrangement of fault segments in the caprock,and they dip synthetically to the reactivated fault at depth.During the NW-SE extension in the Eocene,the predominant movement of the pre-existing fault is strike-slip.Subsequently,during the N-S extension since the Oligocene,inclined at 20.to the pre-existing fault,forming splay fault segments and ultimately creating large en-echelon arcuate faults linked by relay ramps.Using fault throw-distance(T-D)and laser scanning,we reconstructed the fault evolution model of oblique extension reactivation in the presence of a ductile detachment basement.Our study illustrates that the arcuate faults can be categorized into linear master fault segments controlled by pre-existing structures,bending splay faults in the termination zone,and normal fault segments responding to the regional stress field.The interaction between faults occurs among normal faults and strike-slip faults,and the kinematic unification of the two fault systems is accomplished in the intersection zone.As the faults continue to evolve,the new fault segments tend to relinquish the control of pre-existing structures and concentrate more on the development of planar and continuous major faults.The ductile detachment layer significantly contributes to the uniform distribution of strain,resulting in narrow shear zones and discontinuous normal faults in its absence.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e...Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.展开更多
We consider the problem of population estimation using capture-recapture data, where capture probabilities can vary between sampling occasions and behavioural responses. The original model is not identifiable without ...We consider the problem of population estimation using capture-recapture data, where capture probabilities can vary between sampling occasions and behavioural responses. The original model is not identifiable without further restrictions. The novelty of this article is to expand the current research practice by developing a hierarchical Bayesian approach with the assumption that the odds of recapture bears a constant relationship to the odds of initial capture. A real-data example of deer mice population is given to illustrate the proposed method. Three simulation studies are developed to inspect the performance of the proposed Bayesian estimates. Compared with the maximum likelihood estimates discussed in Chao et al. (2000), the hierarchical Bayesian estimate provides reasonably better population estimation with less mean square error;moreover, it is sturdy to underline relationship between the initial and re-capture probabilities. The sensitivity study shows that the proposed Bayesian approach is robust to the choice of hyper-parameters. The third simulation study reveals that both relative bias and relative RMSE approach zero as population size increases. A R-package is developed and used in both data example and simulation.展开更多
Computations involved in Bayesian approach to practical model selection problems are usually very difficult. Computational simplifications are sometimes possible, but are not generally applicable. There is a large lit...Computations involved in Bayesian approach to practical model selection problems are usually very difficult. Computational simplifications are sometimes possible, but are not generally applicable. There is a large literature available on a methodology based on information theory called Minimum Description Length (MDL). It is described here how many of these techniques are either directly Bayesian in nature, or are very good objective approximations to Bayesian solutions. First, connections between the Bayesian approach and MDL are theoretically explored;thereafter a few illustrations are provided to describe how MDL can give useful computational simplifications.展开更多
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ...Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.展开更多
Based on the combined hydraulic calculation for the eastern network region at the Pearl River estuary and several outlets to the Lingdingyang Bay, the sediment calculation modelling was introduced in the establishment...Based on the combined hydraulic calculation for the eastern network region at the Pearl River estuary and several outlets to the Lingdingyang Bay, the sediment calculation modelling was introduced in the establishment of the sediment mathematical model for Lingdingyang Bay and the eastern region with one and two dimensional flow calculation. Model adjustment and verification were performed in conjunction with field data. The simulated results coincide well with measured data.In addition the model is applied to predict the shore-line planning scheme of Lingdingyang Bay.The theoretical criterion is provided for the shore line plan in the model.And a new mathematical simulated method is put out to research the planning engineering concerned with one-dimensional net rivers and two-dimensional estuary.展开更多
基金supported by the research funds for Coupling Research on Industrial Upgrade and Environmental Management in the Bohai Rim-Technique,methodology,and Environmental Economic Policies(No.42076221).
文摘This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.
基金funded through the Special Fund for Agro-Scientific Research in the Public Interestthe Special Public Welfare Industry (agriculture) Research-Research and Demonstration of Fisheries Fishing Technology and Fishing Gear (No. 201203018)the National Natural Science Foundation of China (No. 31402350)
文摘Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research has been conducted on this subject. In this study, we used generalized additive models(GAMs) to explore the influence of spatial-temporal and environmental factors on CPUEs of species aggregated, small yellow croaker(Larimichthys polyactis), and octopus(Octopus variabilis) based on logbooks investigations conducted at 4 stations in an alongshore area of Haizhou Bay from 2011 to 2012. The results showed that all CPUEs exhibited significant spatial-temporal differences at various scales. Aggregated CPUE was high when the sea surface temperature(SST) was 15-18℃ and 20-23℃, which was mainly determined by life history traits of the octopus and small yellow croaker(optimal SSTs 14-17℃ and 19-24℃, respectively). Chlorophyll-a concentration had significant influences on the aggregated, small yellow croaker and octopus CPUEs at optimal ranges of 3.8-6.2 mg m^(-3), 4.2-4.8 mg m^(-3) and 4.5-5.5 mg m^(-3), respectively. Flow through the net had positive relationships with CPUEs. The approximate logarithmic trends in regression curves had a critical point of 2.5 Mm^3 d^(-1), which was the dividing point that differentiated whether the major factor affecting CPUEs was the flow velocity or the fishery resource. Our results from this study will help guide fishery production and improve catch rate of set-net fishing in Haizhou Bay.
基金The project is partly supported by NSFC (19971085)the Doctoral Program Foundation of the Institute of High Education and the Special Foundation of Chinese Academy of Sciences.
文摘Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that the proposed EB decision rules are asymptotically optimal with convergence rates near O(n-1/2). Finally, an example concerning the main result is given.
基金the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX3-SYW-S02)the Youth Foundation of USTC
文摘In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.
基金supported by the National Key Research and Development Program of China(2018AAA0101005,2018AAA0102404)the Program of the Huawei Technologies Co.Ltd.(FA2018111061SOW12)+1 种基金the National Natural Science Foundation of China(61773054)the Youth Research Fund of the State Key Laboratory of Complex Systems Management and Control(20190213)。
文摘Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
文摘The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies. This is based on the solution of an inverse generalized evaluate problem. The stochastic nature of test data is considered and a normal distribution is used for the measurement frequencies. An additional feature is that the engineer's confidence in the measurement frequencies is quantified and incorporated into the identification procedure. A numerical example demonstrates the efficiency of the method.
文摘In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
基金funded by the National Natural Science Foundation of China (grant No.41472116)the Jidong Oil Company of China National Petroleum Corporation (grant No.JDYT-2017-JS-308)the Beijing Research Centre of China National Offshore Oil Company (grant No.CCL2022RCPS2017XNN)。
文摘The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the growth,interaction,as well as linkage of new fault segments.This study analyses a complex multi-phase oblique extension fault system in the Nanpu Sag(NPS)of the Bohai Bay Basin(BBB),China.High-resolution three-dimensional(3D)seismic data and analogue modelling indicate that the oblique extensional reactivation of pre-existing structures governs the sequential arrangement of fault segments in the caprock,and they dip synthetically to the reactivated fault at depth.During the NW-SE extension in the Eocene,the predominant movement of the pre-existing fault is strike-slip.Subsequently,during the N-S extension since the Oligocene,inclined at 20.to the pre-existing fault,forming splay fault segments and ultimately creating large en-echelon arcuate faults linked by relay ramps.Using fault throw-distance(T-D)and laser scanning,we reconstructed the fault evolution model of oblique extension reactivation in the presence of a ductile detachment basement.Our study illustrates that the arcuate faults can be categorized into linear master fault segments controlled by pre-existing structures,bending splay faults in the termination zone,and normal fault segments responding to the regional stress field.The interaction between faults occurs among normal faults and strike-slip faults,and the kinematic unification of the two fault systems is accomplished in the intersection zone.As the faults continue to evolve,the new fault segments tend to relinquish the control of pre-existing structures and concentrate more on the development of planar and continuous major faults.The ductile detachment layer significantly contributes to the uniform distribution of strain,resulting in narrow shear zones and discontinuous normal faults in its absence.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金supported by the Natural Science Foundation of Tianjin(Grant No.16JCYBJC23000)the Open Foundation of the Key Laboratory for Ecological Environment in Coastal Areas of the State Oceanic Administration(Grant No.201604)Science and Technology Foundation for Young Scholars from Tianjin Fisheries Bureau(Grant No.J2014-05)
文摘Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.
文摘We consider the problem of population estimation using capture-recapture data, where capture probabilities can vary between sampling occasions and behavioural responses. The original model is not identifiable without further restrictions. The novelty of this article is to expand the current research practice by developing a hierarchical Bayesian approach with the assumption that the odds of recapture bears a constant relationship to the odds of initial capture. A real-data example of deer mice population is given to illustrate the proposed method. Three simulation studies are developed to inspect the performance of the proposed Bayesian estimates. Compared with the maximum likelihood estimates discussed in Chao et al. (2000), the hierarchical Bayesian estimate provides reasonably better population estimation with less mean square error;moreover, it is sturdy to underline relationship between the initial and re-capture probabilities. The sensitivity study shows that the proposed Bayesian approach is robust to the choice of hyper-parameters. The third simulation study reveals that both relative bias and relative RMSE approach zero as population size increases. A R-package is developed and used in both data example and simulation.
文摘Computations involved in Bayesian approach to practical model selection problems are usually very difficult. Computational simplifications are sometimes possible, but are not generally applicable. There is a large literature available on a methodology based on information theory called Minimum Description Length (MDL). It is described here how many of these techniques are either directly Bayesian in nature, or are very good objective approximations to Bayesian solutions. First, connections between the Bayesian approach and MDL are theoretically explored;thereafter a few illustrations are provided to describe how MDL can give useful computational simplifications.
文摘Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.
文摘Based on the combined hydraulic calculation for the eastern network region at the Pearl River estuary and several outlets to the Lingdingyang Bay, the sediment calculation modelling was introduced in the establishment of the sediment mathematical model for Lingdingyang Bay and the eastern region with one and two dimensional flow calculation. Model adjustment and verification were performed in conjunction with field data. The simulated results coincide well with measured data.In addition the model is applied to predict the shore-line planning scheme of Lingdingyang Bay.The theoretical criterion is provided for the shore line plan in the model.And a new mathematical simulated method is put out to research the planning engineering concerned with one-dimensional net rivers and two-dimensional estuary.