Short-Term Low Volume (STLV) Sea Water Desalination Plant of 6000 m<sup>3</sup>/d is under construction in the middle area of Gaza Strip. The plant will provide desalinated water for 75,000 inhabitants in ...Short-Term Low Volume (STLV) Sea Water Desalination Plant of 6000 m<sup>3</sup>/d is under construction in the middle area of Gaza Strip. The plant will provide desalinated water for 75,000 inhabitants in regions in Khanyounis and Rafah. The intake of desalination plant will be indirectly from four beach wells. This article aims at providing the environmental impacts of these wells on the aquifer and the mitigation measures in case of negative impacts. In order to study the impacts of beach wells on the aquifer, a prediction groundwater three-dimensional model for the beach wells area, starting from the year 2000 until year 2030, was used. MODFLOW software was used for modeling the groundwater flow and SEAWAT software was used to model the seawater intrusion effect. The aquifer parameters were set as if they were in the transient model. The long term seasonal recharge rate for the summer and winter is considered to represent the seasonal differences in recharge through each year. The study showed that the steady four-meter drawdown in the beach wells will force the flow from the eastern direction to the sea. This will have positive impacts on the aquifer since it will decrease the seawater intrusion to the aquifer. The beach wells will pump water with Cl concentration equal to 18,000 mg/l. This means that the beach wells will accelerate the flow from the aquifer to the sea direction but still the pumped water is considered as seawater. This indicates the positive impacts on the groundwater aquifer since it will decrease the seawater intrusion in the beach wells area (Gaza Strip Middle area). In conclusion, these beach wells in this desalination plant (small capacity) are safe for the groundwater aquifer and it will decrease the effect of seawater intrusion on the aquifer.展开更多
文摘Short-Term Low Volume (STLV) Sea Water Desalination Plant of 6000 m<sup>3</sup>/d is under construction in the middle area of Gaza Strip. The plant will provide desalinated water for 75,000 inhabitants in regions in Khanyounis and Rafah. The intake of desalination plant will be indirectly from four beach wells. This article aims at providing the environmental impacts of these wells on the aquifer and the mitigation measures in case of negative impacts. In order to study the impacts of beach wells on the aquifer, a prediction groundwater three-dimensional model for the beach wells area, starting from the year 2000 until year 2030, was used. MODFLOW software was used for modeling the groundwater flow and SEAWAT software was used to model the seawater intrusion effect. The aquifer parameters were set as if they were in the transient model. The long term seasonal recharge rate for the summer and winter is considered to represent the seasonal differences in recharge through each year. The study showed that the steady four-meter drawdown in the beach wells will force the flow from the eastern direction to the sea. This will have positive impacts on the aquifer since it will decrease the seawater intrusion to the aquifer. The beach wells will pump water with Cl concentration equal to 18,000 mg/l. This means that the beach wells will accelerate the flow from the aquifer to the sea direction but still the pumped water is considered as seawater. This indicates the positive impacts on the groundwater aquifer since it will decrease the seawater intrusion in the beach wells area (Gaza Strip Middle area). In conclusion, these beach wells in this desalination plant (small capacity) are safe for the groundwater aquifer and it will decrease the effect of seawater intrusion on the aquifer.