Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the ...Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries(i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks(T2 b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron(copper) ore, 2) skarn-style gold-iron(copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.展开更多
The interpretation of regional gravity and magnetic data, especially the extracted information about concealed targets and structures, provide important evidence for geological structure research, oil-gas resource ass...The interpretation of regional gravity and magnetic data, especially the extracted information about concealed targets and structures, provide important evidence for geological structure research, oil-gas resource assessment, mineral potential forecast and prospective area delineation. Several interpretation methods have been proposed to determine structural boundary, including vertical derivative, horizontal first-order derivative, total horizontal derivative, total gradient modulus, tilt derivative, and theta graph, and each have their advantages and disadvantages. This study used the tilt derivate method to obtain bouguer gravity anomalies in the Beya area, as shown in Fig. 1a.展开更多
The Beiya porphyry-skarn gold-polymetallic deposit is one of the largest gold deposits in China and it also contains significant amounts of silver and base metals.The ore-bearing monzonitic granite porphyry occurs as ...The Beiya porphyry-skarn gold-polymetallic deposit is one of the largest gold deposits in China and it also contains significant amounts of silver and base metals.The ore-bearing monzonitic granite porphyry occurs as a stock,of which the skarn type gold-copper-iron ore bodies are controlled by the contact zone between alkali-rich monzonitic granite porphyry and the limestone,and the gold-silver polymetallic mineralization is controlled by interlayer structure.Alteration and mineralization occur around the intrusion and exterior of monzonitic granite porphyry.Ore mineral formation sequence is as follows:skarn minerals→magnetite→pyrite→chalcopyrite/bornite+pyrite+gold→pyrite+galena+gold(silver).Petrographic studies of fluid inclusions indicate that the following types of inclusions exist in the pre-mineralization quartz-pyrite stage:gas-liquid two-phase inclusions(L-type),three-phase inclusions with daughter minerals(D-type)and gas-rich inclusions(V-type).The colorless transparent quartz in the main gold-chalcopyrite-pyrite stage mainly consists of L-type and V-type inclusions,whereas the inclusions in the late gold-silver-galena stage are mainly L-type.The evolution of ore-forming fluids shows a trend from high temperature,high salinity to medium-low temperature and low salinity.Medium-low density fluids play a dominant role in mineral component migration and transportation.Fluid cooling and boiling are the main mechanisms of gold-copper precipitation,while the involvement of atmospheric water and pH reduction are the main mechanisms of gold-silver polymetallic precipitation.The fluids in the quartz-pyrite stage before mineralization and the main gold-chalcopyrite-pyrite stage are dominated by magmatic water,while in the gold-silver-galena stage the fluids are dominated by atmospheric water.Isotope tracers show that S and Pb are mainly derived from monzonitic granite porphyry,not from limestone of the Beiya Formation.展开更多
Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,cha...Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.展开更多
The Beiya porphyry-skarn Au deposit is one of the largest gold deposits in China,temporally and spatially associated with Eocene intrusions in a post-collisional setting in western Yunnan,China.In this study,we report...The Beiya porphyry-skarn Au deposit is one of the largest gold deposits in China,temporally and spatially associated with Eocene intrusions in a post-collisional setting in western Yunnan,China.In this study,we report new whole-rock geochemistry,Sr-Nd isotope,zircon U-Pb geochronology and in situ zircon Hf-O isotopes of quartz-monzonite and biotite-monzonite porphyries from the Beiya deposit.The porphyry-skarn mineralization at the Beiya deposit is mainly associated with the quartz monzonite porphyry(35.8±0.6 Ma),while the biotite-monzonite porphyry(34.3±0.5 Ma)represents a post-mineralization intrusion crosscutting the main orebodies and the quartz-monzonite porphyry.Both intrusions have high-K and adakitic composition and are characterized by high Sr/Y ratios,high SiO_(2)and Al_(2)O_(3)concentrations(SiO_(2)=69.80-73.86 wt%;Al_(2)O_(3)=14.11-15.19 wt%),and low MgO,Cr,and Ni concentrations(MgO=0.2-1.0 wt%;Cr=1.76-11.13 ppm;Ni=2.52-11.72 ppm).Their Sr-Nd isotope compositions(^(87)Sr/^(86)Sr=0.7066-0.7077;εNd(t)=−5.3 to−1.5)are consistent with the lower crustal-derived amphibolite xenoliths(^(87)Sr/^(86)Sr=0.7060-0.7100;εNd(t)=−10.0 to 0.0),indicating that they might be derived from a thickened juvenile lower crust beneath the Yangtze Craton.The biotite-monzonite porphyry has lower zirconδ^(18)O values of+5.3‰to+6.8‰and higherεHf(t)values of−2.3 to+5.5 than those of the quartz-monzonite porphyry withδ^(18)O values of+7.1‰to+8.2‰andεHf(t)values of−3.8 to+1.5,implying that they were derived from different parts of the lower crust.High Ba/La and Pb/Ce ratios suggest that the quartz-monzonite porphyry is derived from a volatiles-rich reservoir.Relatively higher La/Yb,Sm/Yb and Dy/Yb ratios of the biotite-monzonite porphyry indicate residual garnet in the source,indicating a deeper source than that of the quartz-monzonite porphyry.The hydrous components should be represented by the amphibole-rich lithologies,which has relatively shallower depth than that of the garnet-bearing mafic thickened lower crust.Our data suggest that the mineralized quartz-monzonite porphyry at the Beiya deposit is derived from partial melting of amphibole-rich lithologies in the upper part of the thickened juvenile lower crust beneath the Yangtze Craton,while the post-mineralization biotite-monzonite porphyry is derived from the basal,and volatiles-poor,part of the juvenile lower crust.展开更多
The Beiya gold polymetallic ore district covers an area of 22.06 km2 and is located 47.5 km away in the direction 172° from Heqing county seat of northwestern Yunnan. Its geographical coordinates are 100° 11...The Beiya gold polymetallic ore district covers an area of 22.06 km2 and is located 47.5 km away in the direction 172° from Heqing county seat of northwestern Yunnan. Its geographical coordinates are 100° 11 ′15″-100° 13′00″ E and 60°07′30″26°10′30″ N. Since its discovery in 1999 until November 31st 2013, it has had accumulative proven (111b+122b+331 +332+333) gold metal amounts of 258.475 t at an average grade of 2.61 g/t. This deposit contains 88.98 million tons of paragenetic and associated iron ores, with TFe grade varying from 9% to 36%; metal amounts are: gold 27 t; copper 0.6188 million tons; silver 5439 t; lead 1.35 million ton; zinc 0.31 million ton; and sulfur content is 10.09 million ton. Beiya is one of the top ten largest gold deposits discovered in recent years in China.展开更多
Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. ...Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. It is usually difficult to obtaining solutions in connection with actual geological situations due to the ambiguity of the conventional gravity-processing results and lack of deep constraints. Thus, the three-dimensional (3D) inversion technology is considered as the main channel for reducing the number of solutions and improving the vertical resolution at the current stage. The current study starts from a model test and performs nonlinear 3D density-difference inversion called “model likelihood exploration”, which performs 3D inversion imaging and inversion of the known model while considering the topographic effects. The inversion results are highly consistent with those of the known models. Simultaneously, we consider the Beiya gold mine in Yunnan as an example. The nonlinear 3D densitydifference inversion technology, which is restricted by geological information, is explored to obtain the 3D density body structure below 5 km in the mine area, and the 3D structure of the deep and concealed rock masses are obtained using the density constraints of the intermediate-acid-complex rock masses. The results are well consistent with the surface geological masses and drilling-controlled deep geological masses. The model test and examples both show that the 3D density-difference nonlinear inversion technology can reduce inversion ambiguity, improve resolution, optimize the inversion results, and realize “transparency” in deeply concealed rock masses in ore-concentrated areas,which is useful in guiding the deep ore prospecting.展开更多
Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory...Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits.展开更多
北衙金多金属矿田是藏东-金沙江-哀牢山新生代富碱斑岩成矿带中南段的代表性矿床之一,发育一个与富碱斑岩密切相关的金多金属成矿系统。本文较为系统地分析了矿田内的成岩成矿作用特征及其演化过程,并探讨其与印-亚碰撞造山过程的响应...北衙金多金属矿田是藏东-金沙江-哀牢山新生代富碱斑岩成矿带中南段的代表性矿床之一,发育一个与富碱斑岩密切相关的金多金属成矿系统。本文较为系统地分析了矿田内的成岩成矿作用特征及其演化过程,并探讨其与印-亚碰撞造山过程的响应关系。富碱斑岩具有埃达克岩的地球化学亲合性,其源区是喜马拉雅期印-亚碰撞造山造成的软流圈向东挤出汇聚使大规模走滑断裂活化,诱发玄武质下地壳部分熔融的壳幔过渡层,成岩年龄可分为第一期(65~59Ma)、第二期(36~32Ma)、第三期(26~24Ma)和最晚期(3.8~3.6Ma)等4期,其中第二、三期与富碱岩带北段的两期岩浆集中活动时期基本吻合,形成的斑岩对金多金属成矿较为有利。区内金多金属矿床可划分为三个矿床类型和七个矿床亚类,即与喜马拉雅早—中期斑岩有关的金多金属矿床(Ⅰ),包括接触带夕卡岩型、斑岩型和热液充填型(及熔浆型)金多金属矿床;与喜马拉雅第三期斑岩有关的金多金属矿床(Ⅱ),包括爆破角砾岩型和叠加热液改造型金多金属矿床;以及与喜马拉雅期表生作用有关的风化堆积型金矿床(Ⅲ),包括古砂矿型和红色粘土型金矿床。Ⅰ、Ⅱ类型矿床受富碱斑岩及伴生的 NE 到 NNE 向断裂控制,赋存于富碱斑岩体内、内外接触带及其附近围岩的层间破碎带或构造裂隙带中,在成因和空间上与斑岩及隐爆角砾岩等密切有关。成矿物质和成矿流体主要来源于地幔,围岩地层只是提供了成矿的空间,不同类型的矿体之间呈"贯通式"的时间和空间关系,构成了一个统一的喜马拉雅期富碱斑岩-热液型金多金属成矿系统。先期形成矿床明显受后期岩浆热液的叠加改造,但矿化分布和成矿元素组合仍表现为以斑岩为中心,存在 CuAu(Mo)多金属→FeCuAuPbZn 多金属→AuPhZnAg 多金属的分带特征。从最早期含金铁矿床形成之后,原生金矿的次生富集和表生成矿作用就已开始,并形成不同成因类型的风化-堆积型金矿床。其中,古红色粘土型金矿床的成矿主要发生在始新世到渐新世,河-湖相古砂金矿床形成于23~5Ma 期间,红色粘土型(残坡积型)金矿床可从始新世一直延续至今。通过与区域斑岩成岩成矿演化时序的对比,提出与藏东-金沙江-哀牢山斑岩成矿带上的众多矿床一样,北衙矿田内的成岩成矿作也是喜马拉雅期印-亚陆陆碰撞造山带成岩成矿作用在东南缘构造转换带的远程效应,记录了印-亚大陆碰撞造山的详细过程。因而,该矿田深部及外围地区,仍存在巨大的找矿潜力。盐源-丽江断裂带可能也是一务与藏东-金沙江.哀牢山斑岩成矿带联系密切而又相对独立的富碱斑岩成矿带。展开更多
基金jointly financially supported by “Yunling Scholars” Research Project from Yunnan Province,China Geological Survey Project(No.DD20160124 and 12120114013501)the National Natural Science Foundation of China(grant No.41602103)the “Study on metallogenic regularities and metallogenic series of gold-polymetallic deposits,Northwestern Yunnan Province” research project(E1107)from Yunnan Gold&Mining Group Co.,Ltd
文摘Based on comprehensive petrological, geochronological, and geochemical studies, this study analyzed the relationships between the Beiya gold-polymetallic skarn deposit and quartz syenite porphyries, and discussed the source(s) and evolution of magmas. Our results suggest that syenite porphyries(i.e. the Wandongshan, the Dashadi, and the Hongnitang porphyries), which formed between the Eocene and the early Oligocene epochs, are the sources for the gold-polymetallic ores at the Beiya deposit. Carbonate rocks(T2 b) of the Triassic Beiya Formation in the ore district provide favorable host space for deposit formation. Fold and fault structures collectively play an important role in ore formation. The contact zone between the porphyries and carbonates, the structurally fractured zone of carbonate and clastic rocks, and the zone with well-developed fractures are the ideal locations for ore bodies. Four types of mineralization have been recognized: 1) porphyry-style stockwork gold–iron(copper) ore, 2) skarn-style gold-iron(copper and lead) ore in the near contact zone, 3) strata-bound, lense-type lead–silver–gold ore in the outer contact zone, and 4) distal vein-type gold–lead–silver ore. Supergene processes led to the formation of oxide ore, such as the weathered and accumulated gold–iron ore, the strata-bound fracture oxide ore, and the structure-controlled vein-type ore. Most of these ore deposits are distributed along the axis of the depressed basin, with the hypogene ore controlling the shape and characteristics of the oxide ore. This study provides critical geology understanding for mineral prospecting scenarios.
文摘The interpretation of regional gravity and magnetic data, especially the extracted information about concealed targets and structures, provide important evidence for geological structure research, oil-gas resource assessment, mineral potential forecast and prospective area delineation. Several interpretation methods have been proposed to determine structural boundary, including vertical derivative, horizontal first-order derivative, total horizontal derivative, total gradient modulus, tilt derivative, and theta graph, and each have their advantages and disadvantages. This study used the tilt derivate method to obtain bouguer gravity anomalies in the Beya area, as shown in Fig. 1a.
基金Supported by Project of China Geological Survey(No.1212011085485).
文摘The Beiya porphyry-skarn gold-polymetallic deposit is one of the largest gold deposits in China and it also contains significant amounts of silver and base metals.The ore-bearing monzonitic granite porphyry occurs as a stock,of which the skarn type gold-copper-iron ore bodies are controlled by the contact zone between alkali-rich monzonitic granite porphyry and the limestone,and the gold-silver polymetallic mineralization is controlled by interlayer structure.Alteration and mineralization occur around the intrusion and exterior of monzonitic granite porphyry.Ore mineral formation sequence is as follows:skarn minerals→magnetite→pyrite→chalcopyrite/bornite+pyrite+gold→pyrite+galena+gold(silver).Petrographic studies of fluid inclusions indicate that the following types of inclusions exist in the pre-mineralization quartz-pyrite stage:gas-liquid two-phase inclusions(L-type),three-phase inclusions with daughter minerals(D-type)and gas-rich inclusions(V-type).The colorless transparent quartz in the main gold-chalcopyrite-pyrite stage mainly consists of L-type and V-type inclusions,whereas the inclusions in the late gold-silver-galena stage are mainly L-type.The evolution of ore-forming fluids shows a trend from high temperature,high salinity to medium-low temperature and low salinity.Medium-low density fluids play a dominant role in mineral component migration and transportation.Fluid cooling and boiling are the main mechanisms of gold-copper precipitation,while the involvement of atmospheric water and pH reduction are the main mechanisms of gold-silver polymetallic precipitation.The fluids in the quartz-pyrite stage before mineralization and the main gold-chalcopyrite-pyrite stage are dominated by magmatic water,while in the gold-silver-galena stage the fluids are dominated by atmospheric water.Isotope tracers show that S and Pb are mainly derived from monzonitic granite porphyry,not from limestone of the Beiya Formation.
基金financially supported by the National Key Research and Development Program of China(grant No.2016YFC0600310)the 973 Project(2015CB452600,2011CB4031006)+2 种基金the National Natural Science Foundation of China(grants No.41872083,41472076)the Program of the China Geological Survey(grants No.DD20160024–07,DD20179172)the China Fundamental Research Funds for the Central Universities(grant No.2652018133).
文摘Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.
基金This work was funded by the National Key Research and Development Program of China(Grant Nos.2016YFC0600310 and 2019YFA0708602)the National Natural Science Foundation of China(Grant Nos.41702091,41872083 and 42022014)+1 种基金the Program of the China Geological Survey(Grant No.DD20160024-07),the China Fundamental Research Funds for the Central Universities(Grant No.2652018133)the 111 Project of the Ministry of Science and Technology(Grant No.BP0719021).
文摘The Beiya porphyry-skarn Au deposit is one of the largest gold deposits in China,temporally and spatially associated with Eocene intrusions in a post-collisional setting in western Yunnan,China.In this study,we report new whole-rock geochemistry,Sr-Nd isotope,zircon U-Pb geochronology and in situ zircon Hf-O isotopes of quartz-monzonite and biotite-monzonite porphyries from the Beiya deposit.The porphyry-skarn mineralization at the Beiya deposit is mainly associated with the quartz monzonite porphyry(35.8±0.6 Ma),while the biotite-monzonite porphyry(34.3±0.5 Ma)represents a post-mineralization intrusion crosscutting the main orebodies and the quartz-monzonite porphyry.Both intrusions have high-K and adakitic composition and are characterized by high Sr/Y ratios,high SiO_(2)and Al_(2)O_(3)concentrations(SiO_(2)=69.80-73.86 wt%;Al_(2)O_(3)=14.11-15.19 wt%),and low MgO,Cr,and Ni concentrations(MgO=0.2-1.0 wt%;Cr=1.76-11.13 ppm;Ni=2.52-11.72 ppm).Their Sr-Nd isotope compositions(^(87)Sr/^(86)Sr=0.7066-0.7077;εNd(t)=−5.3 to−1.5)are consistent with the lower crustal-derived amphibolite xenoliths(^(87)Sr/^(86)Sr=0.7060-0.7100;εNd(t)=−10.0 to 0.0),indicating that they might be derived from a thickened juvenile lower crust beneath the Yangtze Craton.The biotite-monzonite porphyry has lower zirconδ^(18)O values of+5.3‰to+6.8‰and higherεHf(t)values of−2.3 to+5.5 than those of the quartz-monzonite porphyry withδ^(18)O values of+7.1‰to+8.2‰andεHf(t)values of−3.8 to+1.5,implying that they were derived from different parts of the lower crust.High Ba/La and Pb/Ce ratios suggest that the quartz-monzonite porphyry is derived from a volatiles-rich reservoir.Relatively higher La/Yb,Sm/Yb and Dy/Yb ratios of the biotite-monzonite porphyry indicate residual garnet in the source,indicating a deeper source than that of the quartz-monzonite porphyry.The hydrous components should be represented by the amphibole-rich lithologies,which has relatively shallower depth than that of the garnet-bearing mafic thickened lower crust.Our data suggest that the mineralized quartz-monzonite porphyry at the Beiya deposit is derived from partial melting of amphibole-rich lithologies in the upper part of the thickened juvenile lower crust beneath the Yangtze Craton,while the post-mineralization biotite-monzonite porphyry is derived from the basal,and volatiles-poor,part of the juvenile lower crust.
文摘The Beiya gold polymetallic ore district covers an area of 22.06 km2 and is located 47.5 km away in the direction 172° from Heqing county seat of northwestern Yunnan. Its geographical coordinates are 100° 11 ′15″-100° 13′00″ E and 60°07′30″26°10′30″ N. Since its discovery in 1999 until November 31st 2013, it has had accumulative proven (111b+122b+331 +332+333) gold metal amounts of 258.475 t at an average grade of 2.61 g/t. This deposit contains 88.98 million tons of paragenetic and associated iron ores, with TFe grade varying from 9% to 36%; metal amounts are: gold 27 t; copper 0.6188 million tons; silver 5439 t; lead 1.35 million ton; zinc 0.31 million ton; and sulfur content is 10.09 million ton. Beiya is one of the top ten largest gold deposits discovered in recent years in China.
基金The authors would like to thank the China Geological Survey (DD20190033)National Natural Science Foundation (41804144) for the financial support,Yunnan Gold and Mineral Group Co.,Ltd. for providing the original geological information,and the reviewers for providing valuable comments.
文摘Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. It is usually difficult to obtaining solutions in connection with actual geological situations due to the ambiguity of the conventional gravity-processing results and lack of deep constraints. Thus, the three-dimensional (3D) inversion technology is considered as the main channel for reducing the number of solutions and improving the vertical resolution at the current stage. The current study starts from a model test and performs nonlinear 3D density-difference inversion called “model likelihood exploration”, which performs 3D inversion imaging and inversion of the known model while considering the topographic effects. The inversion results are highly consistent with those of the known models. Simultaneously, we consider the Beiya gold mine in Yunnan as an example. The nonlinear 3D densitydifference inversion technology, which is restricted by geological information, is explored to obtain the 3D density body structure below 5 km in the mine area, and the 3D structure of the deep and concealed rock masses are obtained using the density constraints of the intermediate-acid-complex rock masses. The results are well consistent with the surface geological masses and drilling-controlled deep geological masses. The model test and examples both show that the 3D density-difference nonlinear inversion technology can reduce inversion ambiguity, improve resolution, optimize the inversion results, and realize “transparency” in deeply concealed rock masses in ore-concentrated areas,which is useful in guiding the deep ore prospecting.
文摘Based on the study about the geological background of Beiya Gold Deposit, numerical simulation was conducted about the three-dimensional structural stress field for Beiya Gold Deposit by applying finite element theory and by employing a linear elasticity model. Results of the simulation indicate that the Beiya syncline is a faulted basin, and a hidden fracture occurs in the west wing of the syncline.Under the action of the EW-trending compressive force, four nearly NS-trending fractures (groups) were generated in the stress stretching areas of the two wings of the syncline, and these fractures constitute favorable tectonic positions for the upward intrusion of porphyry magma and the occurrence of Au-Pb-Zn polymetallic deposits.
文摘北衙金多金属矿田是藏东-金沙江-哀牢山新生代富碱斑岩成矿带中南段的代表性矿床之一,发育一个与富碱斑岩密切相关的金多金属成矿系统。本文较为系统地分析了矿田内的成岩成矿作用特征及其演化过程,并探讨其与印-亚碰撞造山过程的响应关系。富碱斑岩具有埃达克岩的地球化学亲合性,其源区是喜马拉雅期印-亚碰撞造山造成的软流圈向东挤出汇聚使大规模走滑断裂活化,诱发玄武质下地壳部分熔融的壳幔过渡层,成岩年龄可分为第一期(65~59Ma)、第二期(36~32Ma)、第三期(26~24Ma)和最晚期(3.8~3.6Ma)等4期,其中第二、三期与富碱岩带北段的两期岩浆集中活动时期基本吻合,形成的斑岩对金多金属成矿较为有利。区内金多金属矿床可划分为三个矿床类型和七个矿床亚类,即与喜马拉雅早—中期斑岩有关的金多金属矿床(Ⅰ),包括接触带夕卡岩型、斑岩型和热液充填型(及熔浆型)金多金属矿床;与喜马拉雅第三期斑岩有关的金多金属矿床(Ⅱ),包括爆破角砾岩型和叠加热液改造型金多金属矿床;以及与喜马拉雅期表生作用有关的风化堆积型金矿床(Ⅲ),包括古砂矿型和红色粘土型金矿床。Ⅰ、Ⅱ类型矿床受富碱斑岩及伴生的 NE 到 NNE 向断裂控制,赋存于富碱斑岩体内、内外接触带及其附近围岩的层间破碎带或构造裂隙带中,在成因和空间上与斑岩及隐爆角砾岩等密切有关。成矿物质和成矿流体主要来源于地幔,围岩地层只是提供了成矿的空间,不同类型的矿体之间呈"贯通式"的时间和空间关系,构成了一个统一的喜马拉雅期富碱斑岩-热液型金多金属成矿系统。先期形成矿床明显受后期岩浆热液的叠加改造,但矿化分布和成矿元素组合仍表现为以斑岩为中心,存在 CuAu(Mo)多金属→FeCuAuPbZn 多金属→AuPhZnAg 多金属的分带特征。从最早期含金铁矿床形成之后,原生金矿的次生富集和表生成矿作用就已开始,并形成不同成因类型的风化-堆积型金矿床。其中,古红色粘土型金矿床的成矿主要发生在始新世到渐新世,河-湖相古砂金矿床形成于23~5Ma 期间,红色粘土型(残坡积型)金矿床可从始新世一直延续至今。通过与区域斑岩成岩成矿演化时序的对比,提出与藏东-金沙江-哀牢山斑岩成矿带上的众多矿床一样,北衙矿田内的成岩成矿作也是喜马拉雅期印-亚陆陆碰撞造山带成岩成矿作用在东南缘构造转换带的远程效应,记录了印-亚大陆碰撞造山的详细过程。因而,该矿田深部及外围地区,仍存在巨大的找矿潜力。盐源-丽江断裂带可能也是一务与藏东-金沙江.哀牢山斑岩成矿带联系密切而又相对独立的富碱斑岩成矿带。