Selective formation of pharmaceutical intermediates like diphenylmethane, dimethyldiphenylmethane, benzyl toluene and benzoic acid by liquid phase, toluene benzylation with benzyl chloride as a benzylating agent, was ...Selective formation of pharmaceutical intermediates like diphenylmethane, dimethyldiphenylmethane, benzyl toluene and benzoic acid by liquid phase, toluene benzylation with benzyl chloride as a benzylating agent, was systematically studied over plane clay (K-10, montmorillonite), plane H-Beta, plane MFI structured titanosilicate (TS-1) and heteropoly acids [HPA, namely dodecatungstophosphoric acid [H3PO4.12WOa-xH2O] (TPA), dodeca-molybdo phosphoric acid ammonium salt hydrate [H12Mo12N3040P+aq] (DMAA), sodium tungstate hydrated purified [Na12WO4.2H2O] (STH)] supported on clay, H-beta and TS-1. The 20%TPA/Clay, 30%TPA/H-Beta and 30%TPA/TS-1, were observed to be the best catalyst samples over plane clay, plane H-Beta and plane TS-1. The catalyst samples are compared with respect to benzyl chloride conversion and selectivities for diphenylmethane, dimethyl-diphenylmethane, benzyl toluene and benzoic acid. The reaction follows the pseudo-first order rate power law model. The apparent rate constants are calculated and compared with the reported ones.展开更多
NaBH<sub>4</sub>, CH<sub>3</sub>CO<sub>2</sub>H, Pd/C has been described as an effective reagent system to hydrogenate alkenes. Here, we show that the hydrogenation occurs chemosele...NaBH<sub>4</sub>, CH<sub>3</sub>CO<sub>2</sub>H, Pd/C has been described as an effective reagent system to hydrogenate alkenes. Here, we show that the hydrogenation occurs chemoselectively, making it possible to hydrogenate alkenes under Pd/C catalysis with hydrogen created in situ without O- or N-debenzylation.展开更多
A new debenzylation of benzyl esters by silica-supported sodium hydrogen sulfate is described. The debenzylation could be achieved selectively and efficiently in good to excellent yields without affecting sensitive fu...A new debenzylation of benzyl esters by silica-supported sodium hydrogen sulfate is described. The debenzylation could be achieved selectively and efficiently in good to excellent yields without affecting sensitive functional groups such as nitro, unsaturated bonds, and ethyl ester.展开更多
Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatal...Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatalysts were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The electrocatalytic activity of Ag-Ni NPs for benzyl chloride reduction was studied in organic medium using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results show that the addition of Ni element can obviously decrease the size of Ag-Ni NPs, shift the reduction peak potential(φp) of benzyl chloride positively, and increase the catalytic activity of Ag-Ni NPs. However, when the Ni content reaches a certain value, the catalytic activity of Ag-Ni NPs decreases. Meanwhile, the synergistic catalytic effect of Ag-Ni NPs was also discussed.展开更多
A highly efficient benzylation of arenes and heteroarenes catalyzed by HfCl4/HfO2 has been developed. Broad scope of benzylation reagents have been used in this process with high yields under mild condition. Additiona...A highly efficient benzylation of arenes and heteroarenes catalyzed by HfCl4/HfO2 has been developed. Broad scope of benzylation reagents have been used in this process with high yields under mild condition. Additionally, the HfO2 can be re-used after the reaction. ?2009 Xin Qin Gao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic ac...In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic activity not only for electron-rich aromatic compounds, but also for electron-poor aromatic compounds. Under identical conditions, the self-benzylation of benzyl chloride, and dibenzylation and/or multi-benzylation of aromatic compounds were negligible.展开更多
A route was proposed to synthesize 3-benzyl-glyceric acid (3-BGA) as an important intermediate for the synthesis of a novel six-membered cyclic ester monomer-3-benzyloxymethyl-1,4-dioxane-2,5-dione (3-BMG). According ...A route was proposed to synthesize 3-benzyl-glyceric acid (3-BGA) as an important intermediate for the synthesis of a novel six-membered cyclic ester monomer-3-benzyloxymethyl-1,4-dioxane-2,5-dione (3-BMG). According to this route, 3-BGA was obtained from ring-opening reaction of benzyl alcohol with methyl glycidate, which was prepared from the epoxidation of methyl acrylate using sodium hypochlorite as the oxidant.展开更多
o-Bromomethylbenzylidenemalononitrile 4 is reduced by 1-benzyl-1,4-dihydronicotinamide (BNAH, 1) to give 2,2-indanedicarbonitrile 6 and p-bromomethylbenzylidenemalononitrile 5 is reduced by BNAH to give 7 and 8 by hyd...o-Bromomethylbenzylidenemalononitrile 4 is reduced by 1-benzyl-1,4-dihydronicotinamide (BNAH, 1) to give 2,2-indanedicarbonitrile 6 and p-bromomethylbenzylidenemalononitrile 5 is reduced by BNAH to give 7 and 8 by hydride transfer mechanism.展开更多
Benzyl benzoate(BB),an important ester,still demands for green synthesis routes.In this work,by size regula-tion and proper functionalization of carbon nanotubes(CNTs)as the support of gold catalyst,this ester can be ...Benzyl benzoate(BB),an important ester,still demands for green synthesis routes.In this work,by size regula-tion and proper functionalization of carbon nanotubes(CNTs)as the support of gold catalyst,this ester can be synthesized very efficiently directly from benzyl alcohol via oxidative coupling.More attractively,the reaction is performed using water as green solvent and molecular oxygen as green oxidant.Simultaneously,very high selectivity to BB can be obtained near full conversion within very short reaction time(just 0.5 h),while the low-value benzoic acid byproduct is negligible.This is very different from many reported gold catalysts that yield much benzoic acid and/or benzaldehyde in water.The results show that,besides the size of CNTs(length and diameter),the functionalization of CNTs is also critical for improving both conversion and the selectivity to BB.In addition,the reaction mechanism for forming BB ester is put forward as well.展开更多
Objective:To determine the content of benzyl glueosinolate(BG) in the pulp and the seed and investigate the anti-cuncer activity of its hydrolysis product in Curica papaya L.Methods: Determination of BG was performe...Objective:To determine the content of benzyl glueosinolate(BG) in the pulp and the seed and investigate the anti-cuncer activity of its hydrolysis product in Curica papaya L.Methods: Determination of BG was performed on an Hypersil BDS C<sub>18</sub> column at the wavelength of 214 nm with 0.1%trifluoroacelic acid(TFA) aqueous solution(A) and 0.1%TFA acelonilrile(B) as the mobile phase.In vitro activity test was adopted with cidtured human lung cancer H69 cell in vitro to investigate the inhibition rate of cell proliferation of benzyl isothiocyanale(BITC) againsl H69 cell.Results:The pulp has more BG before the maturation of papaya and it nearly disappeared after papaya matured,while the seed contains BG at every stage.Activity test demonstrated that the a higher concentration of BITC would have betler inhibition rate of cell proliferation on 1169 cell,and the IC<sub>50</sub> was 6.5μmol/L.Conclusions:BG also can be produced in the pulp of papaya and it will be stored in the seed after the fruit has been matured.The hydrolysis product of BG has certain cancer-prevention anti-cancer activities for human.展开更多
Various manganese oxide nanorods with similar one-dimensional morphology were prepared by calcination of MnOOH nanorods under different gas atmosphere and at different temper- atures, which were synthesized by a hydro...Various manganese oxide nanorods with similar one-dimensional morphology were prepared by calcination of MnOOH nanorods under different gas atmosphere and at different temper- atures, which were synthesized by a hydrothermal route. The morphology and structure of MnOx catalysts were characterized by a series of techniques including X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and tempera- ture programmed reduction (TPR). The catalytic activities of the prepared MnO~ nanorods were tested in the liquid phase aerobic oxidation of benzyl alcohol, which follow a sequence as MnO2〉Mn203~Mn304〉MnOOH with benzaldehyde being the main product. On the basis of H2-TPR results, the superior activity of MnO2 is ascribed to its lower reduction temperature and therefore high oxygen mobility and excellent redox ability. Moreover, a good recycling ability was observed over MnO2 catalysts by simply thermal treatment in air.展开更多
Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolu...Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolution and benzaldehyde production by dehydrogenation of benzyl alcohol over Nidecorated Zn_(0.5)Cd_(0.5)S solid solution under visible light. The photocatalytic system shows an excellent hydrogen production rate of 666.3 μmol h^(-1) with high stability. The optimal apparent quantum yield of52.5% is obtained at 420 nm. This noble-metal-free photocatalytic system displays much higher activity than pure Zn_(0.5)Cd_(0.5)S and Pt-loaded Zn_(0.5)Cd_(0.5)S solid solution. Further studies reveal that the metallic Ni nanocrystals play an important role in accelerating the separation of photogenerated charge carriers and the subsequent cleavage of α-C–H bond during dehydrogenation of benzyl alcohol.展开更多
A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the pr...A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the properties of reaction-controlled phasetransfer catalysis, and they had excellent catalytic ability to the oxidation of benzyl alcohol. No other by-products were detected by gas chromatography. Once the hydrogen peroxide was consumed completely, the catalyst precipitated from solvent, and the results of the catalyst recycle showed that the catalyst had high stability.展开更多
Heterogeneous Cu-Mn mixed oxides can mediate TEMPO-catalyzed selective oxidation of benzyl alcohol by molecular oxygen under neutral condition, and is recyclable. In the case of the molar ratio of Cu and Mn over 1, th...Heterogeneous Cu-Mn mixed oxides can mediate TEMPO-catalyzed selective oxidation of benzyl alcohol by molecular oxygen under neutral condition, and is recyclable. In the case of the molar ratio of Cu and Mn over 1, the highly-dispersed CuO inside the Cu-Mn mixed oxides is responsible for the good performances in catalytic oxidation.展开更多
Lotus predominantly accumulates benzylisoquinoline alkaloids(BIAs),but their biosynthesis and regulation remain unclear.Here,we investigated structural and regulatory genes involved in BIA accumulation in lotus.Two cl...Lotus predominantly accumulates benzylisoquinoline alkaloids(BIAs),but their biosynthesis and regulation remain unclear.Here,we investigated structural and regulatory genes involved in BIA accumulation in lotus.Two clustered CYP80 genes were identified to be responsible for the biosynthesis of bis-BIAs and aporphine-type BIAs,respectively,and their tissue-specific expression causes divergence in alkaloid component between leaf and embryo.In contrast with the common(S)-reticuline precursor for most BIAs,aporphine alkaloids in lotus leaf may result from the(S)-N-methylcoclaurine precursor.Structural diversity of BIA alkaloids in the leaf is attributed to enzymatic modifications,including intramolecular C–C phenol coupling on ring A and methylation and demethylation at certain positions.Additionally,most BIA biosynthetic pathway genes show higher levels of expression in the leaf of high-BIA cultivar compared with low-BIA cultivar,suggesting transcriptional regulation of BIA accumulation in lotus.Five transcription factors,including three MYBs,one ethylene-responsive factor,and one basic helix–loop–helix(bHLH),were identified to be candidate regulators of BIA biosynthesis in lotus.Our study reveals a BIA biosynthetic pathway and its transcriptional regulation in lotus,which will enable a deeper understanding of BIA biosynthesis in plants.展开更多
A series of 12-molybdophosphoric acid (MPA) supported on V2O5 dispersed γ-Al2O3 catalysts with different vanadia loadings were prepared by impregnation and characterized by N2 adsorption-desorption, X-ray diffraction...A series of 12-molybdophosphoric acid (MPA) supported on V2O5 dispersed γ-Al2O3 catalysts with different vanadia loadings were prepared by impregnation and characterized by N2 adsorption-desorption, X-ray diffraction, temperature-programmed reduction, in situ laser Raman spectroscopy, UV-Vis diffused reflectance spectroscopy, scanning electron microscopy, and temperature-programmed desorption of NH3 techniques. Their catalytic activities were evaluated for the vapor phase aerobic oxidation of benzyl alcohol. The catalysts exhibited high catalytic activity and the conversion of benzyl alcohol depended on the vanadia content while the catalyst with 15 wt% V2O5 content showed optimum activity. The characterization results suggest the presence of well-dispersed V2O5 and partially disintegrated Keggin ions of MPA on the support. In situ Raman studies showed a reduced Mo(IV) species when the catalysts were calcined at high temperatures. The high oxidation activity of the catalysts is related to the synergistic effect between MPA and V2O5.展开更多
Flotation separation of smithsonite from calcite is difficult due to their similar surface properties.In the present study,a reagent scheme of depressant calcium lignosulphonate(CLS) and collector benzyl hydroxamic ac...Flotation separation of smithsonite from calcite is difficult due to their similar surface properties.In the present study,a reagent scheme of depressant calcium lignosulphonate(CLS) and collector benzyl hydroxamic acid(BHA) was introduced in the flotation of smithsonite from calcite.Microflotation tests revealed that the efficient flotation of smithsonite from calcite could only be obtained with the addition order of BHA before CLS,which was opposite to the widely-used order that adding depressant prior to the collector.The zeta potential measurements indicated that BHA selectively adsorbed onto smithsonite surface,then not allowed the CLS adsorption onto the smithsonite surface rather than calcite surface because of the steric hindrance,thereby the smithsonite surface remained hydrophobic while calcite surface became more hydrophilic after the addition of CLS.As a result,the calcite flotation was completely depressed while the smithsonite flotation recovery was still in high value,leading to the optimal flotation separation performance.展开更多
Two new benzyl dihydroflavones phelligrins A and B were isolated from the fruit body of Phellinus igniarius. Their structrues were identified as 5, 7, 4-trihydroxy-6-O-hydroxybenzyl -dihydroflavone and 5, 7, 4-trihyd...Two new benzyl dihydroflavones phelligrins A and B were isolated from the fruit body of Phellinus igniarius. Their structrues were identified as 5, 7, 4-trihydroxy-6-O-hydroxybenzyl -dihydroflavone and 5, 7, 4-trihydroxy-8-O-hydroxybenzyldihydroflavone, respectively, by means of spectral methods.展开更多
The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry. In this work, we present a systematic study of a Pt/ZnO catalyst for the ...The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry. In this work, we present a systematic study of a Pt/ZnO catalyst for the selective oxidation of benzyl alcohol at room temperature under base‐free aqueous conditions. Experimental observations and density functional theory calculations suggest that ZnO as a support can facilitate the adsorption of benzyl alcohol, which subsequently reacts with the activated oxygen species on the Pt catalyst, producing benzaldehyde. The resulting solid achieves a high conversion(94.1 ± 5.1% in 10 h) of benzyl alcohol and nearly 100% selectivity to benzalde‐hyde with ambient air as the oxidant. In addition, by introducing a small amount of Bi(1.78 wt%) into Pt/ZnO, we can further enhance the activity by 350%.展开更多
The solvent‐free oxidation of benzyl alcohol was studied using supported Pd‐Ni bimetallic nanoparticles.Compared with monometallic Pd,the addition of Ni to Pd was found to be effective in suppressing the nondesired ...The solvent‐free oxidation of benzyl alcohol was studied using supported Pd‐Ni bimetallic nanoparticles.Compared with monometallic Pd,the addition of Ni to Pd was found to be effective in suppressing the nondesired product toluene,thereby enhancing the selectivity towards benzaldehyde.This result was attributed to a dual effect of Ni addition:the weakening of dissociative adsorption of benzyl alcohol and the promotion of oxygen species involved in the oxidation pathway.展开更多
文摘Selective formation of pharmaceutical intermediates like diphenylmethane, dimethyldiphenylmethane, benzyl toluene and benzoic acid by liquid phase, toluene benzylation with benzyl chloride as a benzylating agent, was systematically studied over plane clay (K-10, montmorillonite), plane H-Beta, plane MFI structured titanosilicate (TS-1) and heteropoly acids [HPA, namely dodecatungstophosphoric acid [H3PO4.12WOa-xH2O] (TPA), dodeca-molybdo phosphoric acid ammonium salt hydrate [H12Mo12N3040P+aq] (DMAA), sodium tungstate hydrated purified [Na12WO4.2H2O] (STH)] supported on clay, H-beta and TS-1. The 20%TPA/Clay, 30%TPA/H-Beta and 30%TPA/TS-1, were observed to be the best catalyst samples over plane clay, plane H-Beta and plane TS-1. The catalyst samples are compared with respect to benzyl chloride conversion and selectivities for diphenylmethane, dimethyl-diphenylmethane, benzyl toluene and benzoic acid. The reaction follows the pseudo-first order rate power law model. The apparent rate constants are calculated and compared with the reported ones.
文摘NaBH<sub>4</sub>, CH<sub>3</sub>CO<sub>2</sub>H, Pd/C has been described as an effective reagent system to hydrogenate alkenes. Here, we show that the hydrogenation occurs chemoselectively, making it possible to hydrogenate alkenes under Pd/C catalysis with hydrogen created in situ without O- or N-debenzylation.
基金support from National Science Foundation of China(Nos.03772648 and 30721005)Knowledge Innovation Program of the Chinese Academy of Sciences(No.06G8031014)
文摘A new debenzylation of benzyl esters by silica-supported sodium hydrogen sulfate is described. The debenzylation could be achieved selectively and efficiently in good to excellent yields without affecting sensitive functional groups such as nitro, unsaturated bonds, and ethyl ester.
基金Projects(2127106951238002+3 种基金J1210040J1103312)supported by the National Natural Science Foundation of ChinaProject(2013GK3015)supported by the Science and Technology Project of Hunan ProvinceChina
文摘Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatalysts were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The electrocatalytic activity of Ag-Ni NPs for benzyl chloride reduction was studied in organic medium using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results show that the addition of Ni element can obviously decrease the size of Ag-Ni NPs, shift the reduction peak potential(φp) of benzyl chloride positively, and increase the catalytic activity of Ag-Ni NPs. However, when the Ni content reaches a certain value, the catalytic activity of Ag-Ni NPs decreases. Meanwhile, the synergistic catalytic effect of Ag-Ni NPs was also discussed.
文摘A highly efficient benzylation of arenes and heteroarenes catalyzed by HfCl4/HfO2 has been developed. Broad scope of benzylation reagents have been used in this process with high yields under mild condition. Additionally, the HfO2 can be re-used after the reaction. ?2009 Xin Qin Gao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘In the presence of Nafion/SiO2 nanocomposite catalyst, the benzylation of aromatic compounds with benzyl chloride proceeded to afford diphenylmethane derivatives in high yields. The catalyst showed high catalytic activity not only for electron-rich aromatic compounds, but also for electron-poor aromatic compounds. Under identical conditions, the self-benzylation of benzyl chloride, and dibenzylation and/or multi-benzylation of aromatic compounds were negligible.
基金This work was supported by the Major State Basic Research Program of China (No. G1999064704).
文摘A route was proposed to synthesize 3-benzyl-glyceric acid (3-BGA) as an important intermediate for the synthesis of a novel six-membered cyclic ester monomer-3-benzyloxymethyl-1,4-dioxane-2,5-dione (3-BMG). According to this route, 3-BGA was obtained from ring-opening reaction of benzyl alcohol with methyl glycidate, which was prepared from the epoxidation of methyl acrylate using sodium hypochlorite as the oxidant.
文摘o-Bromomethylbenzylidenemalononitrile 4 is reduced by 1-benzyl-1,4-dihydronicotinamide (BNAH, 1) to give 2,2-indanedicarbonitrile 6 and p-bromomethylbenzylidenemalononitrile 5 is reduced by BNAH to give 7 and 8 by hydride transfer mechanism.
基金Financial support from the Program for the National Natural Science Foundation of China(No.21403143)LiaoNing Revitalization Talents Program(No.XLYC1907167)Key projects of LiaoNing Natural Sci-ence Foundation(No.20180510007)is gratefully acknowledged.
文摘Benzyl benzoate(BB),an important ester,still demands for green synthesis routes.In this work,by size regula-tion and proper functionalization of carbon nanotubes(CNTs)as the support of gold catalyst,this ester can be synthesized very efficiently directly from benzyl alcohol via oxidative coupling.More attractively,the reaction is performed using water as green solvent and molecular oxygen as green oxidant.Simultaneously,very high selectivity to BB can be obtained near full conversion within very short reaction time(just 0.5 h),while the low-value benzoic acid byproduct is negligible.This is very different from many reported gold catalysts that yield much benzoic acid and/or benzaldehyde in water.The results show that,besides the size of CNTs(length and diameter),the functionalization of CNTs is also critical for improving both conversion and the selectivity to BB.In addition,the reaction mechanism for forming BB ester is put forward as well.
基金Supported by National Key Technologies R & D Program of China (2009BADA2B02-04)Natural Science Fund of Hainan Province(No.309042)Natural Science Fund of China(No.31171822)
文摘Objective:To determine the content of benzyl glueosinolate(BG) in the pulp and the seed and investigate the anti-cuncer activity of its hydrolysis product in Curica papaya L.Methods: Determination of BG was performed on an Hypersil BDS C<sub>18</sub> column at the wavelength of 214 nm with 0.1%trifluoroacelic acid(TFA) aqueous solution(A) and 0.1%TFA acelonilrile(B) as the mobile phase.In vitro activity test was adopted with cidtured human lung cancer H69 cell in vitro to investigate the inhibition rate of cell proliferation of benzyl isothiocyanale(BITC) againsl H69 cell.Results:The pulp has more BG before the maturation of papaya and it nearly disappeared after papaya matured,while the seed contains BG at every stage.Activity test demonstrated that the a higher concentration of BITC would have betler inhibition rate of cell proliferation on 1169 cell,and the IC<sub>50</sub> was 6.5μmol/L.Conclusions:BG also can be produced in the pulp of papaya and it will be stored in the seed after the fruit has been matured.The hydrolysis product of BG has certain cancer-prevention anti-cancer activities for human.
文摘Various manganese oxide nanorods with similar one-dimensional morphology were prepared by calcination of MnOOH nanorods under different gas atmosphere and at different temper- atures, which were synthesized by a hydrothermal route. The morphology and structure of MnOx catalysts were characterized by a series of techniques including X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and tempera- ture programmed reduction (TPR). The catalytic activities of the prepared MnO~ nanorods were tested in the liquid phase aerobic oxidation of benzyl alcohol, which follow a sequence as MnO2〉Mn203~Mn304〉MnOOH with benzaldehyde being the main product. On the basis of H2-TPR results, the superior activity of MnO2 is ascribed to its lower reduction temperature and therefore high oxygen mobility and excellent redox ability. Moreover, a good recycling ability was observed over MnO2 catalysts by simply thermal treatment in air.
基金financially supported by the National Key Research and Development Program of China(2017YFA0402800)the National Natural Science Foundation of China(grant nos.51772285,21473170)the Fundamental Research Funds for the Central Universities
文摘Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolution and benzaldehyde production by dehydrogenation of benzyl alcohol over Nidecorated Zn_(0.5)Cd_(0.5)S solid solution under visible light. The photocatalytic system shows an excellent hydrogen production rate of 666.3 μmol h^(-1) with high stability. The optimal apparent quantum yield of52.5% is obtained at 420 nm. This noble-metal-free photocatalytic system displays much higher activity than pure Zn_(0.5)Cd_(0.5)S and Pt-loaded Zn_(0.5)Cd_(0.5)S solid solution. Further studies reveal that the metallic Ni nanocrystals play an important role in accelerating the separation of photogenerated charge carriers and the subsequent cleavage of α-C–H bond during dehydrogenation of benzyl alcohol.
文摘A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide. The results indicated that three of these catalysts showed the properties of reaction-controlled phasetransfer catalysis, and they had excellent catalytic ability to the oxidation of benzyl alcohol. No other by-products were detected by gas chromatography. Once the hydrogen peroxide was consumed completely, the catalyst precipitated from solvent, and the results of the catalyst recycle showed that the catalyst had high stability.
基金the National Natural Science Foundation of China (No.20572102)
文摘Heterogeneous Cu-Mn mixed oxides can mediate TEMPO-catalyzed selective oxidation of benzyl alcohol by molecular oxygen under neutral condition, and is recyclable. In the case of the molar ratio of Cu and Mn over 1, the highly-dispersed CuO inside the Cu-Mn mixed oxides is responsible for the good performances in catalytic oxidation.
基金This project was supported by funds received from the National Natural Science Foundation of China(Grants 31450110420 and 31272195)the Overseas Construction Plan for Science and Education Base,China-Africa Center for Research and Education,Chinese Academy of Sciences(Grant No.SAJC201327).
文摘Lotus predominantly accumulates benzylisoquinoline alkaloids(BIAs),but their biosynthesis and regulation remain unclear.Here,we investigated structural and regulatory genes involved in BIA accumulation in lotus.Two clustered CYP80 genes were identified to be responsible for the biosynthesis of bis-BIAs and aporphine-type BIAs,respectively,and their tissue-specific expression causes divergence in alkaloid component between leaf and embryo.In contrast with the common(S)-reticuline precursor for most BIAs,aporphine alkaloids in lotus leaf may result from the(S)-N-methylcoclaurine precursor.Structural diversity of BIA alkaloids in the leaf is attributed to enzymatic modifications,including intramolecular C–C phenol coupling on ring A and methylation and demethylation at certain positions.Additionally,most BIA biosynthetic pathway genes show higher levels of expression in the leaf of high-BIA cultivar compared with low-BIA cultivar,suggesting transcriptional regulation of BIA accumulation in lotus.Five transcription factors,including three MYBs,one ethylene-responsive factor,and one basic helix–loop–helix(bHLH),were identified to be candidate regulators of BIA biosynthesis in lotus.Our study reveals a BIA biosynthetic pathway and its transcriptional regulation in lotus,which will enable a deeper understanding of BIA biosynthesis in plants.
基金supported by the Department of Science & Technology, New Delhi under SERC scheme, DST No. SR/S1/PC-40/2006
文摘A series of 12-molybdophosphoric acid (MPA) supported on V2O5 dispersed γ-Al2O3 catalysts with different vanadia loadings were prepared by impregnation and characterized by N2 adsorption-desorption, X-ray diffraction, temperature-programmed reduction, in situ laser Raman spectroscopy, UV-Vis diffused reflectance spectroscopy, scanning electron microscopy, and temperature-programmed desorption of NH3 techniques. Their catalytic activities were evaluated for the vapor phase aerobic oxidation of benzyl alcohol. The catalysts exhibited high catalytic activity and the conversion of benzyl alcohol depended on the vanadia content while the catalyst with 15 wt% V2O5 content showed optimum activity. The characterization results suggest the presence of well-dispersed V2O5 and partially disintegrated Keggin ions of MPA on the support. In situ Raman studies showed a reduced Mo(IV) species when the catalysts were calcined at high temperatures. The high oxidation activity of the catalysts is related to the synergistic effect between MPA and V2O5.
基金the support of Natural Science Foundation of China (51804238, 51904214)the Open Foundation of State Key Laboratory of Mineral Processing, BGRIMM Technology (No. BGRIMM-KJSKL-2021-22)the Fundamental Research Funds for the Central Universities (2021IVA110, 2021IVA039)。
文摘Flotation separation of smithsonite from calcite is difficult due to their similar surface properties.In the present study,a reagent scheme of depressant calcium lignosulphonate(CLS) and collector benzyl hydroxamic acid(BHA) was introduced in the flotation of smithsonite from calcite.Microflotation tests revealed that the efficient flotation of smithsonite from calcite could only be obtained with the addition order of BHA before CLS,which was opposite to the widely-used order that adding depressant prior to the collector.The zeta potential measurements indicated that BHA selectively adsorbed onto smithsonite surface,then not allowed the CLS adsorption onto the smithsonite surface rather than calcite surface because of the steric hindrance,thereby the smithsonite surface remained hydrophobic while calcite surface became more hydrophilic after the addition of CLS.As a result,the calcite flotation was completely depressed while the smithsonite flotation recovery was still in high value,leading to the optimal flotation separation performance.
基金The authors are grateful to professor Ablez zeper Institute of Materia Medica,Chinese Academy of Medical Sciences,for mass spectra measurements,and financial support from National“863”program of China(Grant No.2001AA234021).
文摘Two new benzyl dihydroflavones phelligrins A and B were isolated from the fruit body of Phellinus igniarius. Their structrues were identified as 5, 7, 4-trihydroxy-6-O-hydroxybenzyl -dihydroflavone and 5, 7, 4-trihydroxy-8-O-hydroxybenzyldihydroflavone, respectively, by means of spectral methods.
基金supported by the National Natural Science Foundation of China (21703050, 21271153, 21373181)China Postdoctoral Science Foun‐dation (512200‐X91701)Special Research Foundation of Young Teachers in Hangzhou Dianzi University (ZX150204307002/032)~~
文摘The selective oxidation of alcohol using molecular oxygen as an oxidant and water as a green sol‐vent is of great interest in green chemistry. In this work, we present a systematic study of a Pt/ZnO catalyst for the selective oxidation of benzyl alcohol at room temperature under base‐free aqueous conditions. Experimental observations and density functional theory calculations suggest that ZnO as a support can facilitate the adsorption of benzyl alcohol, which subsequently reacts with the activated oxygen species on the Pt catalyst, producing benzaldehyde. The resulting solid achieves a high conversion(94.1 ± 5.1% in 10 h) of benzyl alcohol and nearly 100% selectivity to benzalde‐hyde with ambient air as the oxidant. In addition, by introducing a small amount of Bi(1.78 wt%) into Pt/ZnO, we can further enhance the activity by 350%.
基金supported by National Natural Science Foundation of China(21271153,21373181,21222307,U1402233)Major Research Plan of National Natural Science Foundation of China(91545113)the Fundamental Research Funds for the Central Universities(2014XZZX003-02)~~
文摘The solvent‐free oxidation of benzyl alcohol was studied using supported Pd‐Ni bimetallic nanoparticles.Compared with monometallic Pd,the addition of Ni to Pd was found to be effective in suppressing the nondesired product toluene,thereby enhancing the selectivity towards benzaldehyde.This result was attributed to a dual effect of Ni addition:the weakening of dissociative adsorption of benzyl alcohol and the promotion of oxygen species involved in the oxidation pathway.