One of the critical challenges that limit broad commercialization of proton exchange membrane fuel cells(PEMFC)is to reduce the usage of Pt while maintaining high power output and sufficient durability.Herein,a novel ...One of the critical challenges that limit broad commercialization of proton exchange membrane fuel cells(PEMFC)is to reduce the usage of Pt while maintaining high power output and sufficient durability.Herein,a novel bifunctional layer consisting of vertically aligned carbon nanotubes(VACNTs)and nanoparticles of Pt-Co catalysts(Pt-Co/VACNTs)is reported for highperformance PEMFCs.Readily prepared by a two-step process,the Pt-Co/VACNTs layer with a hydrophilic catalyst-loaded side and a hydrophobic gas diffusion side enables a PTFE-free electrode structure with fully exposed catalyst active sites and superior gas–water diffusion capability.When tested in a PEMFC,the bi-functional Pt-Co/VACNTs layer with ultralow Pt loading(~65μgcathodecm-2)demonstrates a power density of 19.5 kW gPt cathode-1 at 0.6 V,more than seven times that of a cell with commercial Pt/C catalyst(2.7 kW gPt cathode-1 at 0.6 V)at a loading of 400μgcathodecm-2 tested under similar conditions.This remarkable design of VACNTs-based catalyst with dual functionalities enables much lower Pt loading,faster mass transport,and higher electrochemical performance and stability.Further,the preparation procedure can be easily scaled up for low-cost fabrication and commercialization.展开更多
There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNT...There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO_2 nanotube-supported Co_3O_4 nanoparticles and its carbon nanotubes hybrid material(Co_3 O_4/MnO_2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co_3O_4/MnO_2,bare MnO_2 nanotubes and CNTs, the hybrid Co_3O_4/MnO_2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition(0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage(~1.47 V),a high discharge peak power density(340 mW cm^(-2)) and a large specific capacity(775 mAh g^(-1) at 10 mA cm^(-2)) for the primary Zn-air battery, a small charge-discharge voltage gap and a high cycle-life(504 cycles at 10 mA cm^(-2) with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process.展开更多
The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile...The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications.展开更多
We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, ...We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm-1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.展开更多
A novel bi-functional photorefractive acrylate polymer with pendant carbazolyl groups and azo derivatives as side chains was synthesized. Photorefractive experiments showed a high two-beam coupling gain coefficient of...A novel bi-functional photorefractive acrylate polymer with pendant carbazolyl groups and azo derivatives as side chains was synthesized. Photorefractive experiments showed a high two-beam coupling gain coefficient of 93 cm(-1), diffraction efficiency of 12% and electro-optic coefficient of 26 pm/V were obtained.展开更多
The aim of this theoretical investigation is the description of the multicomponent mass transfer process in the Nano- Composites (NC)—novel materials with the bi-functional matrix. The new theoretical NC Model is ass...The aim of this theoretical investigation is the description of the multicomponent mass transfer process in the Nano- Composites (NC)—novel materials with the bi-functional matrix. The new theoretical NC Model is assigned for the modern theoretical investigations of the multicomponent mass transfer kinetics in the bi-functional NC materials. This NC Model for the multicomponent mass transfer in the bi-functional NC matrix includes into the consideration the proposed key conception—two co-existing routes: I—chemical reactions onto the active NC centers-sites, and II—diffusion mass transfer inside the bi-functional NC matrix. All the results are presented in the terms of the additional key concept: propagating multicomponent concentration waves (W+) in the NC matrix. The used W+ concept for the description of the multicomponent NC mass transfer kinetics give the clear interpretation of the computerized results. The mass transfer process in the NC matrix has been described theoretically by computerized simulation. The results of the calculations are new and illustrated by author’s animations showing visually the propagation of the multicomponent concentration waves (W) inside the various NC matrixes: r-beads, cylindrical ro-fibers, or planar L-membranes. Two variants of modeling for mass transfer diffusion kinetics in the bi-functional NC matrixes with one (Variant 1), or two (Variant 2) dissociation-association reactions at the active nano-sites (R0) are considered theoretically.展开更多
Particulate materials possessing dual functionalities have received tremendous investigations in many fields,owing to their superiority over mono-functional counterparts and their potential for process integration and...Particulate materials possessing dual functionalities have received tremendous investigations in many fields,owing to their superiority over mono-functional counterparts and their potential for process integration and intensification.This review focuses on bi-functional catalytic particles which also serve as sorbents/adsorbents or heat suppliers in the scheme of various thermo-chemical processes,enabling inherent separation or energy conservation within single-step operation.Bi-functional particles applied for integration of reaction and separation including sorption-enhanced hydrogen production and integrated capture and catalytic conversion processes are reviewed in detail,providing insights into material design and key performance indicators.On the other hand,bi-functional particles applied for integration of reaction and non-thermal radiation heating,including electrothermal and photothermal assisted heterogeneously catalyzed reactions,are also reviewed,with emphasis on the material property and energy efficiency improvement.These bi-functional particles show broad adaptability and feasibility in various reactions operated in integrated and intensified schemes,affording huge potentials for further improving productivity and efficiency in thermo-chemical processes.展开更多
A series of Ni/HZSM-5 and Ni/HIM-5 bi-functional catalysts were synthesized and applied to the aqueous-phase hydrodeoxygenation(HDO)of phenol.The Ni dispersibility and particle sizes were shown to be directly related ...A series of Ni/HZSM-5 and Ni/HIM-5 bi-functional catalysts were synthesized and applied to the aqueous-phase hydrodeoxygenation(HDO)of phenol.The Ni dispersibility and particle sizes were shown to be directly related to the porosity and crystal sizes of the parent zeolites,which further influenced the catalytic performances.The large pores and small crystal sizes of the parent zeolites were beneficial for dispersing Ni and forming small Ni particles,and the corresponding Ni/zeolite catalyst exhibited a higher phenol conversion and selectivity towards hydrocarbons.Importantly,the Ni/HIM-5 bi-functional catalyst exhibited a high activity(98.3%)and high selectivity for hydrocarbons(98.8%)when heated at 220°C for 1 h and is thus a new potential catalyst for the HDO of phenolics to form hydrocarbons in the aqueous phase.展开更多
Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covale...Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covalent interaction between carbon nanotubes and graphene are important to ensure a stable hi-erarchical architecture and effective mass transfer.Herein,we propose a one-step strategy to synthesize 3D interconnected carbon nanotubes/graphene hybrids on the easy-to-remove biomass-derived substrate.The calcined natural cuttlebone as bi-functional catalyst precursor can simultaneously grow carbon nan-otubes and graphene by one-step chemical vapor deposition without the addition of extra metal catalysts,while the interconnected structure can act as the porous template for graphene growth.The simultane-ous growth process can obtain covalent bonding between carbon nanotubes and graphene,while the crystalline quality and interlayer space can be adjusted by different carbon sources and growth parame-ters(e.g.,temperature).The one-step grown carbon nanotubes/graphene hybrids with seamless interfaces and hierarchical interconnected 3D structure can effectively enhance the electron transfer as well as the electrolyte infiltration efficiency.When utilized as lithium-ion batteries(LIBs)anode,a high specific ca-pacity(544 mAh g^(-1) at 0.1 A g^(-1)),good rate capability(200 mAh g^(-1) at 6.4 A g^(-1) with an ultrashort charge time of 113 s),and excellent cyclic stability can be achieved.This simple and one-step carbon nanotubes/graphene hybrids fabrication strategy can be easily scale-up and applied in various fields.展开更多
Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis.Herein,an efficient bi-functional catalyst ...Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis.Herein,an efficient bi-functional catalyst of Ir/MoS_(2) nanoflowers(Ir/MoS_(2) NFs) catalyst was reported for acidic water electrolysis which can be constructed by coupling three-dimensionally interconnected MoS_(2) NFs with ultrafine Ir nanoparticles.A more suitable adsorption ability for the H* and *OOH intermediates was revealed,where the Ir sites were proposed as the main active center and MoS_(2) promoted the charge relocation to electronically modify the interfacial structure.The significant interfacial charge redistribution between the MoS_(2) NFs and the Ir active sites synergistically induced excellent catalytic activity and stability for the water electrolysis reaction.Specifically,the catalyst required overpotentials of 270 and 35 mV to reach a kinetic current density of 10 mA cm^(-2)for OER and HER,respectively,loading on the glass carbon electrode,with high catalytic kinetics,stability,and catalytic efficiency.A two-electrode system constructed by Ir/MoS_(2) NFs drove 10 mA cm^(-2)at a cell voltage of 1.55 V,about 70 mV lower than that of the commercial Pt/C||IrO_(2) system.In addition,partial surface oxidation of Ir nanoparticles to generate high-valent Ir species was also found significant to accelerate OER.The enhanced catalytic performance was attributed to the strong metal-support interaction in the Ir/MoS_(2) NFs catalyst system that changed the electronic structure of Ir metal and promoted the synergistic catalytic effect between Ir and MoS_(2) NFs.The work presented a novel platform of Ir-catalyst for proton exchange membrane water electrolysis.展开更多
Amorphous aluminophosphate(AlP) and metal-aluminophosphates(MAlPs, where M = 2.5 mol%Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity for the synthesi...Amorphous aluminophosphate(AlP) and metal-aluminophosphates(MAlPs, where M = 2.5 mol%Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity for the synthesis of jasminaldehyde through the aldol condensation of nheptanal and benzaldehyde were investigated. The nitrogen adsorption-desorption isotherms showed that the microporosity exhibited by the aluminophosphate was changed to a mesoporous and macroporous structure which depended on the metal incorporated, with a concomitant change in the surface area. Temperature-programmed desorption of NHand COrevealed that the materials possessed both acidic and basic sites. The acidic strength of the material was either increased or decreased depending on the nature of the metal. The basicity was increased compared to AlP. All the materials were X-ray amorphous and powder X-ray diffraction studies indicated the absence of metal oxide phases. The Fourier transform infrared analysis confirmed the presence of phosphate groups and also the absence of any M-O moieties in the materials. The selected organic reaction occurred only in the presence of the AlP and MAlPs. The selectivity for the jasminaldehyde product was up to 75% with a yield of 65%. The best conversion of nheptanal with a high selectivity to jasminaldehyde was obtained with FeAlP as the catalyst, and this material was characterized to have less weak acid sites and more basic sites.展开更多
The phosphine-functionalized phosphonium-based ionic liquids(dppm-Q, dppe-Q, dppp-Q and dppb-Q) as the bi-functional ligands enable the efficient one-pot tandem hydroformylationeacetalization. It was found that, in dp...The phosphine-functionalized phosphonium-based ionic liquids(dppm-Q, dppe-Q, dppp-Q and dppb-Q) as the bi-functional ligands enable the efficient one-pot tandem hydroformylationeacetalization. It was found that, in dppm-Q, dppe-Q, dppp-Q and dppb-Q, the incorporated phosphino-fragments were responsible for Rh-catalyzed hydroformylation and the phosphoniums were in charge of the subsequent acetalization as the Lewis acid catalysts. Moreover, the diphosphonium-based ionic liquid of dppb-DQ could be applied as a co-solvent to immobilize the Rh/dppb-Q catalytic system with the advantages of the improved catalytic performance, the available catalyst recyclability, and the wide generality for the substrates.展开更多
Simultaneous broadband absorption and polarization conversion are crucial in many practical applications,especially in terahertz communications.Thus,actively tunable metamaterial systems can exploit the graphene-based...Simultaneous broadband absorption and polarization conversion are crucial in many practical applications,especially in terahertz communications.Thus,actively tunable metamaterial systems can exploit the graphene-based nanomaterials derived from renewable resources because of the flexible surface conductivity and selective permeability of the nanomaterials at terahertz frequencies.In this paper,we propose a graphene-based active tunable bifunctional metasurface for dynamic terahertz absorption and polarization conversion.The graphene ring presents a certain opening angle(A)along the diagonal of the xoy plane.When A=0°,the proposed metasurface behaves as a broadband absorber.Numerical results show the feasibility of achieving this polarization-insensitive absorber with nearly 100%absorptance,and the bandwidth of its 90%absorptance is 1.22 THz under normal incidence.Alternatively,when A=40°after optimization,the proposed metasurface serves as a broadband polarization convertor,resulting in robust broadband polarization conversion ratio(PCR)curves with a bandwidth surpassing 0.5 THz in the reflection spectrum.To tune the PCR response or the broad absorption spectrum of graphene,we change the Fermi energy of graphene dynamically from 0 to 0.9 eV.Furthermore,both the broadband absorption and the linear polarization conversion spectra of the proposed metasurface exhibit insensitivity to the incident angle,allowing large incident angles within 40°under high-performance operating conditions.To demonstrate the physical process,we present the impedance matching theory and measure electric field distributions.This architecture in the THz frequency range has several applications,such as in modulators,sensors,stealth,and optoelectronic switches.THz wave polarization and beam steering also have broad application prospects in the field of intelligent systems.展开更多
To improve the activity for glycerol oxidation reaction (GOR) of Pt, PtAg (mole ratio of Pt/Ag = 3 and 1) alloy nanoparticle-loaded carbon black (Pt/CB, PtAg(3:1)/CB, PtAg(1:1)/CB) catalysts were prepared by a wet met...To improve the activity for glycerol oxidation reaction (GOR) of Pt, PtAg (mole ratio of Pt/Ag = 3 and 1) alloy nanoparticle-loaded carbon black (Pt/CB, PtAg(3:1)/CB, PtAg(1:1)/CB) catalysts were prepared by a wet method. The resultant catalysts, moreover, were heat-treated in a N2 atmosphere at 200°C. The alloying of Pt with Ag for each PtAg/CB was confirmed by X-ray diffractometry and electron dispersive X-ray spectrometry. The heat-treatment did not change the crystal structure of the PtAg alloys and increased their particle size. X-ray photoelectron spectroscopy exhibited that stabilizers were completely removed from the PtAg alloy surface, and the Pt4f and Ag3d doublets due to metallic Pt and Ag, respectively, shifted to lower binding energies, supporting the alloying of Pt with Ag. Both PtAg/CB electrodes had two oxidation waves of glycerol irrespective of heat-treatment, which was different from the Pt/CB electrode. The onset potential of the first oxidation wave was -0.60 V, which was 0.20 V less positive than that for the Pt/CB electrode, indicating the alloying of Pt with Ag greatly improved the GOR activity of Pt. The heat-treated PtAg(3:1)/ CB electrode improved the GOR current density of the second oxidation peak. In the potentiostatic electrolysis at -0.1 and 0 V for both PtAg/CB electrodes, the ratio of oxidation current density at 60 min to that at 5 min (j<sub>60</sub>/j<sub>5</sub>), an indicator of the catalyst deterioration, at 0 V was higher than that at -0.1 V, because the adsorbed oxidation intermediates were greatly consumed at the larger overpotential. The heat-treatment of the PtAg(3:1)/CB electrode increased the j60</sub>/j5</sub> value at -0.1 V but decreased that at 0 V. This could be attributed to the formation of high-order oxidation intermediates which might have stronger poisoning effect.展开更多
Chemotherapy-induced complications,particularly lethal cardiovascular diseases,pose significant challenges for cancer survivors.The intertwined adverse effects,brought by cancer and its complication,further complicate...Chemotherapy-induced complications,particularly lethal cardiovascular diseases,pose significant challenges for cancer survivors.The intertwined adverse effects,brought by cancer and its complication,further complicate anticancer therapy and lead to diminished clinical outcomes.Simple supplementation of cardioprotective agents falls short in addressing these challenges.Developing bifunctional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously.Drug repurposing was naturally endowed with co-therapeutic potential of two indications,implying a unique chance in the development of bi-functional agents.Herein,we further proposed a novel“trilogy of drug repurposing”strategy that comprises function-based,targetfocused,and scaffold-driven repurposing approaches,aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent.Through function-based repurposing,a cardioprotective agent,carvedilol(CAR),was identified as a potential neddylation inhibitor to suppress lung cancer growth.Employing target-focused SAR studies and scaffold-driven drug design,we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection.Remarkably,optimal derivative 43 displayed promising bi-functional effects,especially in various self-established heart failure mice models with and without tumor-bearing.Collectively,the present study validated the practicability of the“trilogy of drug repurposing”strategy in the development of bi-functional cotherapy agents.展开更多
Strong metal–support interaction(SMSI),namely the strong electronic and structural interaction between metal nanoparticles and supports,one of the most typical synergetic catalytic effects in composite catalysts,has ...Strong metal–support interaction(SMSI),namely the strong electronic and structural interaction between metal nanoparticles and supports,one of the most typical synergetic catalytic effects in composite catalysts,has been found critically important in the design of catalyst for thermocatalysis in the past.Recently,however,important and great progress of SMSI-based synergetic effects has been made in electrocatalysis,such as electrocatalyst design and electrocatalytic mechanism investigations.To better understand the nature of the synergetic effect assisting the further development of electrocatalysts,a comprehensive and in-depth overview highlighting and discussing the recent advances of SMSI in electrocatalysis is necessary and highly desirable but still absent.Herein,this review firstly presents various strategies of designing and constructing composite catalysts featuring SMSI.Further from the perspectives of electrocatalysis,the characterization techniques towards the electron structure,local interfacial and morphological features and active sites for SMSI-based electrocatalysts,have been summarized in detail.Importantly,the recent advances in the design of single-and bi-functional electrocatalysts featuring SMSI-based synergetic catalytic effects,and the key roles of SMSI during the electrocatalytic reactions are emphasized.Finally,the challenges and prospects are discussed to highlight the key remaining issues in the future development of SMSI-based electrocatalysts.展开更多
The rational design and preparation of promising cathode electrocatalysts with excellent activity and strong stability for metal-air batteries is a huge challenge.In this work,we innovate an approach of combining solv...The rational design and preparation of promising cathode electrocatalysts with excellent activity and strong stability for metal-air batteries is a huge challenge.In this work,we innovate an approach of combining solvothermal with high-temperature pyrolysis utilizing zeolitic imidazolate framework(ZIF)-8 and ZIF-67 as the template to synthesize a novel hybrid material of hierarchical porous yolk-shell Co-N-C polyhedron nanocatalysts engaged in graphene nanopocket(yolk-shell Co-N-C@GNP).The obtained catalyst exhibits prominent bifunctional electrocatalytic performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)in the alkaline condition,in which the half-wave potential is 0.86 V for ORR,and the over-potential for OER is 0.42 V at 10 mA·cm^(-2).The rechargeable aqueous Zn-air battery fabricated with yolk-shell Co-N-C@GNP cathode deliveries an open circuit voltage(OCV)of 1.60 V,a peak power density of 236.2 mW·cm^(-2),and excellent cycling stability over 94 h at 5 mA·cm^(-2).The quasi-solid-state Zn-air battery(ZAB)using yolk-shell Co-N-C@GNP displays a high OCV of 1.40 V and a small voltage gap of 0.88 V in continuous cycling tests at 2 mA·cm^(-2).This work provides a valuable thought to focus attention on the design of high-efficient bifunctional catalysts with hierarchical porous yolk-shell framework and high-density metal active sites for metal-air battery technologies.展开更多
Exploring and designing bi-functional catalysts with earth-abundant elements that can work well for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline medium are of significance f...Exploring and designing bi-functional catalysts with earth-abundant elements that can work well for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline medium are of significance for producing clean fuel to relieve energy and environment crisis.Here,a novel Ni/NiO monolithic electrode was developed by a facile and cost-effective acid promoted activation of Ni foam.After the treatment,this obtained monolithic electrode with a layer of NiO on its surface demonstrates rough and sheet-like morphology,which not only possesses larger accessible surface area but also provides more reactive active sites. Compared with powder catalysts,this monolithic electrode can achieve intimate contact between the electrocatalyst and the current collector,which will alleviate the problem of pulverization and enable the stable function of the electrode. It can be served as an efficient bi-functional electrocatalyst with an overpotential of 160 mV for HER and 290 mV for OER to produce current densities of 10 mA cm^(-2) in the alkaline medium. And it maintains benign stability after 5,000 cycles,which rivals many recent reported noble-metal free catalysts in 1.0mol L^(-1) KOH solution. Attributed to the easy,scalable methodology and high catalytic efficiency,this work not only offers a promising monolithic catalyst but also inspires us to exploit other inexpensive,highly efficient and self-standing noble metalfree electrocatalysts for scale-up electrochemical water-splitting technology.展开更多
Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membr...Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membrane-based fuel cells(AEMFCs) and water electrolyzers(AEMWEs). However, fundamental understanding of the mechanism for HOR/HER catalysis under alkaline media is still debatable. Here we develop an amorphous tungsten oxide clusters modified iridium-tungsten nanocrystallines(Ir WOx)which exhibited by far the highest exchange current density and mass activity, about three times higher than the commercial Pt/C toward alkaline HOR/HER. Density functional theory(DFT) calculations reveal the WOxclusters act as a pivotal role to boost reversible hydrogen electrode reactions in alkaline condition but via different mechanisms, which are, hydrogen binding energy(HBE) mechanism for HOR and bifunctional mechanism for HER. This work is expected to promote our fundamental understanding about the alkaline HOR/HER catalysis and provide a new avenue for rational design of highly efficient electrocatalysts toward HOR/HER under alkaline electrolytes.展开更多
Designing of hetero-atomic doped carbon-based systems through pyrolysis of abundant element organic precursors is a novel approach to construct rational porous carbon materials.Herein,a highly-cross-linked triazine po...Designing of hetero-atomic doped carbon-based systems through pyrolysis of abundant element organic precursors is a novel approach to construct rational porous carbon materials.Herein,a highly-cross-linked triazine polymer is employed to fabricate N,P co-doped porous carbon(A-TDP-12)with tunable active nitrogen in the carbon framework for simultaneous enhancement of CO_(2) capture capability and Supercapacitance(SC).The synthesized A-TDP-12 possesses a typical hierarchically porous framework(micro-pores and meso-pores)with a large surface area(1332 m^(2) g^(-1))and a rich content of N(7.89 at.%)and P(0.74 at.%).It delivers a CO_(2) adsorption capacity of 1.52 and 5.68 mmol g^(-1) at 1 and 5 bar,respectively,with almost no decay after successive 8 recycles.In 6 M KOH aqueous electrolyte,A-TDP-12 exhibits a superior specific capacitance of 172.7 F g^(-1) at a current density of 1 A g^(-1).Even at a high current density of 10 A g^(-1),80%of its initial capacity still remains.This work not only offers a novel strategy for fabricating promising adsorbents and electrodes for CO_(2) uptake and SCs,but also provides new insights into design of porous carbon material for related applications.展开更多
基金supported by the National Natural Science Foundation of China under(No.21878158,2182880,51678291)Jiangsu Natural Science Foundation for Distinguished Young Scholars(No.BK20170043)+3 种基金the National Key R&D Program of China(2018YFB1502903)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)China Postdoctoral Science Foundation(2019M660112)the Jiangsu Postdoctoral Science Funding Project
文摘One of the critical challenges that limit broad commercialization of proton exchange membrane fuel cells(PEMFC)is to reduce the usage of Pt while maintaining high power output and sufficient durability.Herein,a novel bifunctional layer consisting of vertically aligned carbon nanotubes(VACNTs)and nanoparticles of Pt-Co catalysts(Pt-Co/VACNTs)is reported for highperformance PEMFCs.Readily prepared by a two-step process,the Pt-Co/VACNTs layer with a hydrophilic catalyst-loaded side and a hydrophobic gas diffusion side enables a PTFE-free electrode structure with fully exposed catalyst active sites and superior gas–water diffusion capability.When tested in a PEMFC,the bi-functional Pt-Co/VACNTs layer with ultralow Pt loading(~65μgcathodecm-2)demonstrates a power density of 19.5 kW gPt cathode-1 at 0.6 V,more than seven times that of a cell with commercial Pt/C catalyst(2.7 kW gPt cathode-1 at 0.6 V)at a loading of 400μgcathodecm-2 tested under similar conditions.This remarkable design of VACNTs-based catalyst with dual functionalities enables much lower Pt loading,faster mass transport,and higher electrochemical performance and stability.Further,the preparation procedure can be easily scaled up for low-cost fabrication and commercialization.
基金financial support from the National Natural Science Foundation of China (U1510120, 91645110)the Project of Introducing Overseas Intelligence High Education of China (2017-2018)+1 种基金the Graduate Thesis Innovation Foundation of Donghua University (EG2016034)the College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University
文摘There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO_2 nanotube-supported Co_3O_4 nanoparticles and its carbon nanotubes hybrid material(Co_3 O_4/MnO_2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co_3O_4/MnO_2,bare MnO_2 nanotubes and CNTs, the hybrid Co_3O_4/MnO_2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition(0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage(~1.47 V),a high discharge peak power density(340 mW cm^(-2)) and a large specific capacity(775 mAh g^(-1) at 10 mA cm^(-2)) for the primary Zn-air battery, a small charge-discharge voltage gap and a high cycle-life(504 cycles at 10 mA cm^(-2) with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process.
基金supported by the National Natural Science Foundation of China (51901083)the Fundamental Research Funds for the Central Universities。
文摘The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications.
基金Funded by the National Natural Science Foundation of China (No.50802069)the Natural Science Foundation of Wuhan University of Tech-nology (471-38650378)
文摘We report an organic/inorganic hybridized nanocomposite consisting of a bi-functional poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl serves as a polymeric charge-transporting and second-order nonliner optical matrix, and CdS nanoparticles as photosensitizers to manifest photorefractive (PR) effect. The unpoled PVNPAK film exhibits a second harmonic generation (SHG) coefficient of 4.7 pm/V due to the possibility of self-alignment of the azo chromophore. Significant enhancement of photoconductivity is noticed with the increase of CdS nanoparticles concentration. The photorefractive property of the polymer nanocomposites were determined by two-beam coupling (TBC) experiment. The TBC gain and diffraction efficiency of 11.89 cm-1 and 3.2% were obtained for PVNPAK/CdS at zero electrical field.
文摘A novel bi-functional photorefractive acrylate polymer with pendant carbazolyl groups and azo derivatives as side chains was synthesized. Photorefractive experiments showed a high two-beam coupling gain coefficient of 93 cm(-1), diffraction efficiency of 12% and electro-optic coefficient of 26 pm/V were obtained.
文摘The aim of this theoretical investigation is the description of the multicomponent mass transfer process in the Nano- Composites (NC)—novel materials with the bi-functional matrix. The new theoretical NC Model is assigned for the modern theoretical investigations of the multicomponent mass transfer kinetics in the bi-functional NC materials. This NC Model for the multicomponent mass transfer in the bi-functional NC matrix includes into the consideration the proposed key conception—two co-existing routes: I—chemical reactions onto the active NC centers-sites, and II—diffusion mass transfer inside the bi-functional NC matrix. All the results are presented in the terms of the additional key concept: propagating multicomponent concentration waves (W+) in the NC matrix. The used W+ concept for the description of the multicomponent NC mass transfer kinetics give the clear interpretation of the computerized results. The mass transfer process in the NC matrix has been described theoretically by computerized simulation. The results of the calculations are new and illustrated by author’s animations showing visually the propagation of the multicomponent concentration waves (W) inside the various NC matrixes: r-beads, cylindrical ro-fibers, or planar L-membranes. Two variants of modeling for mass transfer diffusion kinetics in the bi-functional NC matrixes with one (Variant 1), or two (Variant 2) dissociation-association reactions at the active nano-sites (R0) are considered theoretically.
基金supported by the National Natural Science Foundation of China(Grant Nos.22078106,22008044)Guangdong Natural Science Foundation(Grant No.2017A030312005).
文摘Particulate materials possessing dual functionalities have received tremendous investigations in many fields,owing to their superiority over mono-functional counterparts and their potential for process integration and intensification.This review focuses on bi-functional catalytic particles which also serve as sorbents/adsorbents or heat suppliers in the scheme of various thermo-chemical processes,enabling inherent separation or energy conservation within single-step operation.Bi-functional particles applied for integration of reaction and separation including sorption-enhanced hydrogen production and integrated capture and catalytic conversion processes are reviewed in detail,providing insights into material design and key performance indicators.On the other hand,bi-functional particles applied for integration of reaction and non-thermal radiation heating,including electrothermal and photothermal assisted heterogeneously catalyzed reactions,are also reviewed,with emphasis on the material property and energy efficiency improvement.These bi-functional particles show broad adaptability and feasibility in various reactions operated in integrated and intensified schemes,affording huge potentials for further improving productivity and efficiency in thermo-chemical processes.
基金This work was supported by the National Natural Science Foundation of China(Grant No.21908225)the National Key Research and Development Program of China(Grant No.2016YFB0600505)Youth Innovation Promotion Association,CAS(2014037).
文摘A series of Ni/HZSM-5 and Ni/HIM-5 bi-functional catalysts were synthesized and applied to the aqueous-phase hydrodeoxygenation(HDO)of phenol.The Ni dispersibility and particle sizes were shown to be directly related to the porosity and crystal sizes of the parent zeolites,which further influenced the catalytic performances.The large pores and small crystal sizes of the parent zeolites were beneficial for dispersing Ni and forming small Ni particles,and the corresponding Ni/zeolite catalyst exhibited a higher phenol conversion and selectivity towards hydrocarbons.Importantly,the Ni/HIM-5 bi-functional catalyst exhibited a high activity(98.3%)and high selectivity for hydrocarbons(98.8%)when heated at 220°C for 1 h and is thus a new potential catalyst for the HDO of phenolics to form hydrocarbons in the aqueous phase.
基金the financially supported from the National Nat-ural Science Foundation of China(Nos.21978178,22008157,and 21776187)the Distinguished Young Scholars for the Natural Science Foundation of Sichuan Province(No.2023NSFSC1915)。
文摘Carbon nanotubes/graphene hybrid materials with excellent physicochemical properties can be widely ap-plied in the fields of energy storage,electrocatalysis,sensing,etc.Reducing the self-stacking and achiev-ing covalent interaction between carbon nanotubes and graphene are important to ensure a stable hi-erarchical architecture and effective mass transfer.Herein,we propose a one-step strategy to synthesize 3D interconnected carbon nanotubes/graphene hybrids on the easy-to-remove biomass-derived substrate.The calcined natural cuttlebone as bi-functional catalyst precursor can simultaneously grow carbon nan-otubes and graphene by one-step chemical vapor deposition without the addition of extra metal catalysts,while the interconnected structure can act as the porous template for graphene growth.The simultane-ous growth process can obtain covalent bonding between carbon nanotubes and graphene,while the crystalline quality and interlayer space can be adjusted by different carbon sources and growth parame-ters(e.g.,temperature).The one-step grown carbon nanotubes/graphene hybrids with seamless interfaces and hierarchical interconnected 3D structure can effectively enhance the electron transfer as well as the electrolyte infiltration efficiency.When utilized as lithium-ion batteries(LIBs)anode,a high specific ca-pacity(544 mAh g^(-1) at 0.1 A g^(-1)),good rate capability(200 mAh g^(-1) at 6.4 A g^(-1) with an ultrashort charge time of 113 s),and excellent cyclic stability can be achieved.This simple and one-step carbon nanotubes/graphene hybrids fabrication strategy can be easily scale-up and applied in various fields.
基金supported by the National Natural Science Foundation of China (21972124, 22272148)the Priority Academic Program Development of Jiangsu Higher Education Institution。
文摘Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis.Herein,an efficient bi-functional catalyst of Ir/MoS_(2) nanoflowers(Ir/MoS_(2) NFs) catalyst was reported for acidic water electrolysis which can be constructed by coupling three-dimensionally interconnected MoS_(2) NFs with ultrafine Ir nanoparticles.A more suitable adsorption ability for the H* and *OOH intermediates was revealed,where the Ir sites were proposed as the main active center and MoS_(2) promoted the charge relocation to electronically modify the interfacial structure.The significant interfacial charge redistribution between the MoS_(2) NFs and the Ir active sites synergistically induced excellent catalytic activity and stability for the water electrolysis reaction.Specifically,the catalyst required overpotentials of 270 and 35 mV to reach a kinetic current density of 10 mA cm^(-2)for OER and HER,respectively,loading on the glass carbon electrode,with high catalytic kinetics,stability,and catalytic efficiency.A two-electrode system constructed by Ir/MoS_(2) NFs drove 10 mA cm^(-2)at a cell voltage of 1.55 V,about 70 mV lower than that of the commercial Pt/C||IrO_(2) system.In addition,partial surface oxidation of Ir nanoparticles to generate high-valent Ir species was also found significant to accelerate OER.The enhanced catalytic performance was attributed to the strong metal-support interaction in the Ir/MoS_(2) NFs catalyst system that changed the electronic structure of Ir metal and promoted the synergistic catalytic effect between Ir and MoS_(2) NFs.The work presented a novel platform of Ir-catalyst for proton exchange membrane water electrolysis.
基金Sud-Chemie India Ltd. Cochin for support to carry out some of the instrumental analysis work
文摘Amorphous aluminophosphate(AlP) and metal-aluminophosphates(MAlPs, where M = 2.5 mol%Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity for the synthesis of jasminaldehyde through the aldol condensation of nheptanal and benzaldehyde were investigated. The nitrogen adsorption-desorption isotherms showed that the microporosity exhibited by the aluminophosphate was changed to a mesoporous and macroporous structure which depended on the metal incorporated, with a concomitant change in the surface area. Temperature-programmed desorption of NHand COrevealed that the materials possessed both acidic and basic sites. The acidic strength of the material was either increased or decreased depending on the nature of the metal. The basicity was increased compared to AlP. All the materials were X-ray amorphous and powder X-ray diffraction studies indicated the absence of metal oxide phases. The Fourier transform infrared analysis confirmed the presence of phosphate groups and also the absence of any M-O moieties in the materials. The selected organic reaction occurred only in the presence of the AlP and MAlPs. The selectivity for the jasminaldehyde product was up to 75% with a yield of 65%. The best conversion of nheptanal with a high selectivity to jasminaldehyde was obtained with FeAlP as the catalyst, and this material was characterized to have less weak acid sites and more basic sites.
基金financially supported by the National Natural Science Foundation of China(Nos.21673077,21473058,and 21273077)
文摘The phosphine-functionalized phosphonium-based ionic liquids(dppm-Q, dppe-Q, dppp-Q and dppb-Q) as the bi-functional ligands enable the efficient one-pot tandem hydroformylationeacetalization. It was found that, in dppm-Q, dppe-Q, dppp-Q and dppb-Q, the incorporated phosphino-fragments were responsible for Rh-catalyzed hydroformylation and the phosphoniums were in charge of the subsequent acetalization as the Lewis acid catalysts. Moreover, the diphosphonium-based ionic liquid of dppb-DQ could be applied as a co-solvent to immobilize the Rh/dppb-Q catalytic system with the advantages of the improved catalytic performance, the available catalyst recyclability, and the wide generality for the substrates.
基金supported by the High Level Talent Project of Basic and Applied Basic Research(Natural Science)of Hainan Province in 2019(No.2019RC158)by the Project of the Education Department of Hainan Province(No.Hnky2020ZD-2),all support is gratefully acknowledged.
文摘Simultaneous broadband absorption and polarization conversion are crucial in many practical applications,especially in terahertz communications.Thus,actively tunable metamaterial systems can exploit the graphene-based nanomaterials derived from renewable resources because of the flexible surface conductivity and selective permeability of the nanomaterials at terahertz frequencies.In this paper,we propose a graphene-based active tunable bifunctional metasurface for dynamic terahertz absorption and polarization conversion.The graphene ring presents a certain opening angle(A)along the diagonal of the xoy plane.When A=0°,the proposed metasurface behaves as a broadband absorber.Numerical results show the feasibility of achieving this polarization-insensitive absorber with nearly 100%absorptance,and the bandwidth of its 90%absorptance is 1.22 THz under normal incidence.Alternatively,when A=40°after optimization,the proposed metasurface serves as a broadband polarization convertor,resulting in robust broadband polarization conversion ratio(PCR)curves with a bandwidth surpassing 0.5 THz in the reflection spectrum.To tune the PCR response or the broad absorption spectrum of graphene,we change the Fermi energy of graphene dynamically from 0 to 0.9 eV.Furthermore,both the broadband absorption and the linear polarization conversion spectra of the proposed metasurface exhibit insensitivity to the incident angle,allowing large incident angles within 40°under high-performance operating conditions.To demonstrate the physical process,we present the impedance matching theory and measure electric field distributions.This architecture in the THz frequency range has several applications,such as in modulators,sensors,stealth,and optoelectronic switches.THz wave polarization and beam steering also have broad application prospects in the field of intelligent systems.
文摘To improve the activity for glycerol oxidation reaction (GOR) of Pt, PtAg (mole ratio of Pt/Ag = 3 and 1) alloy nanoparticle-loaded carbon black (Pt/CB, PtAg(3:1)/CB, PtAg(1:1)/CB) catalysts were prepared by a wet method. The resultant catalysts, moreover, were heat-treated in a N2 atmosphere at 200°C. The alloying of Pt with Ag for each PtAg/CB was confirmed by X-ray diffractometry and electron dispersive X-ray spectrometry. The heat-treatment did not change the crystal structure of the PtAg alloys and increased their particle size. X-ray photoelectron spectroscopy exhibited that stabilizers were completely removed from the PtAg alloy surface, and the Pt4f and Ag3d doublets due to metallic Pt and Ag, respectively, shifted to lower binding energies, supporting the alloying of Pt with Ag. Both PtAg/CB electrodes had two oxidation waves of glycerol irrespective of heat-treatment, which was different from the Pt/CB electrode. The onset potential of the first oxidation wave was -0.60 V, which was 0.20 V less positive than that for the Pt/CB electrode, indicating the alloying of Pt with Ag greatly improved the GOR activity of Pt. The heat-treated PtAg(3:1)/ CB electrode improved the GOR current density of the second oxidation peak. In the potentiostatic electrolysis at -0.1 and 0 V for both PtAg/CB electrodes, the ratio of oxidation current density at 60 min to that at 5 min (j<sub>60</sub>/j<sub>5</sub>), an indicator of the catalyst deterioration, at 0 V was higher than that at -0.1 V, because the adsorbed oxidation intermediates were greatly consumed at the larger overpotential. The heat-treatment of the PtAg(3:1)/CB electrode increased the j60</sub>/j5</sub> value at -0.1 V but decreased that at 0 V. This could be attributed to the formation of high-order oxidation intermediates which might have stronger poisoning effect.
基金supported by the National Natural Science Foundation of China (Grant Nos. 22177076, 81820108022, 22037002)the Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism (2021 Sci&Tech 03-28, China)+4 种基金Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation (2021KJ03-12, China)the Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20212702, China)the Chinese Special Fund for State Key Laboratory of Bioreactor Engineering(2060204)Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-10-E00056, 2021-01-07-00-02-E00104, China)the Scientific and Technological Innovation Action Plan of Science and Technology Commission of Shanghai(20JC1411300, China)
文摘Chemotherapy-induced complications,particularly lethal cardiovascular diseases,pose significant challenges for cancer survivors.The intertwined adverse effects,brought by cancer and its complication,further complicate anticancer therapy and lead to diminished clinical outcomes.Simple supplementation of cardioprotective agents falls short in addressing these challenges.Developing bifunctional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously.Drug repurposing was naturally endowed with co-therapeutic potential of two indications,implying a unique chance in the development of bi-functional agents.Herein,we further proposed a novel“trilogy of drug repurposing”strategy that comprises function-based,targetfocused,and scaffold-driven repurposing approaches,aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent.Through function-based repurposing,a cardioprotective agent,carvedilol(CAR),was identified as a potential neddylation inhibitor to suppress lung cancer growth.Employing target-focused SAR studies and scaffold-driven drug design,we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection.Remarkably,optimal derivative 43 displayed promising bi-functional effects,especially in various self-established heart failure mice models with and without tumor-bearing.Collectively,the present study validated the practicability of the“trilogy of drug repurposing”strategy in the development of bi-functional cotherapy agents.
基金supported by National Key R&D Program of China(2022YFB4002700)Shanghai Science and Technology Committee Rising-Star Program(22QA1403400)the Natural Science Foundation of Shanghai(21ZR1418700).
文摘Strong metal–support interaction(SMSI),namely the strong electronic and structural interaction between metal nanoparticles and supports,one of the most typical synergetic catalytic effects in composite catalysts,has been found critically important in the design of catalyst for thermocatalysis in the past.Recently,however,important and great progress of SMSI-based synergetic effects has been made in electrocatalysis,such as electrocatalyst design and electrocatalytic mechanism investigations.To better understand the nature of the synergetic effect assisting the further development of electrocatalysts,a comprehensive and in-depth overview highlighting and discussing the recent advances of SMSI in electrocatalysis is necessary and highly desirable but still absent.Herein,this review firstly presents various strategies of designing and constructing composite catalysts featuring SMSI.Further from the perspectives of electrocatalysis,the characterization techniques towards the electron structure,local interfacial and morphological features and active sites for SMSI-based electrocatalysts,have been summarized in detail.Importantly,the recent advances in the design of single-and bi-functional electrocatalysts featuring SMSI-based synergetic catalytic effects,and the key roles of SMSI during the electrocatalytic reactions are emphasized.Finally,the challenges and prospects are discussed to highlight the key remaining issues in the future development of SMSI-based electrocatalysts.
基金This study was supported by the National Natural Science Foundation of China(Nos.22008058 and 52074119)the Joint Funds of National Natural Science Foundation of China(No.U20A20280)+3 种基金the program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No.T2021010)the Joint supported by Hubei Provincial Natural Science Foundation and Huangshi of China(No.2022CFD039)the Postgraduate Innovative Research Project of Hubei Normal University(Nos.20220512 and 20220552)College Students innovation and entrepreneurship training program of Hubei Province(No.S202210513055).
文摘The rational design and preparation of promising cathode electrocatalysts with excellent activity and strong stability for metal-air batteries is a huge challenge.In this work,we innovate an approach of combining solvothermal with high-temperature pyrolysis utilizing zeolitic imidazolate framework(ZIF)-8 and ZIF-67 as the template to synthesize a novel hybrid material of hierarchical porous yolk-shell Co-N-C polyhedron nanocatalysts engaged in graphene nanopocket(yolk-shell Co-N-C@GNP).The obtained catalyst exhibits prominent bifunctional electrocatalytic performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)in the alkaline condition,in which the half-wave potential is 0.86 V for ORR,and the over-potential for OER is 0.42 V at 10 mA·cm^(-2).The rechargeable aqueous Zn-air battery fabricated with yolk-shell Co-N-C@GNP cathode deliveries an open circuit voltage(OCV)of 1.60 V,a peak power density of 236.2 mW·cm^(-2),and excellent cycling stability over 94 h at 5 mA·cm^(-2).The quasi-solid-state Zn-air battery(ZAB)using yolk-shell Co-N-C@GNP displays a high OCV of 1.40 V and a small voltage gap of 0.88 V in continuous cycling tests at 2 mA·cm^(-2).This work provides a valuable thought to focus attention on the design of high-efficient bifunctional catalysts with hierarchical porous yolk-shell framework and high-density metal active sites for metal-air battery technologies.
基金supported by the National Natural Science Foundation of China (21571073 and 21673090)the National Basic Research Program of China (2015CB932600)+2 种基金Hubei Provincial Natural Science Foundation of China (2016CFA031)the Program for HUST Interdisciplinary Innovation Team (2015ZDTD038)the Fundamental Research Funds for the Central Universities
文摘Exploring and designing bi-functional catalysts with earth-abundant elements that can work well for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) in alkaline medium are of significance for producing clean fuel to relieve energy and environment crisis.Here,a novel Ni/NiO monolithic electrode was developed by a facile and cost-effective acid promoted activation of Ni foam.After the treatment,this obtained monolithic electrode with a layer of NiO on its surface demonstrates rough and sheet-like morphology,which not only possesses larger accessible surface area but also provides more reactive active sites. Compared with powder catalysts,this monolithic electrode can achieve intimate contact between the electrocatalyst and the current collector,which will alleviate the problem of pulverization and enable the stable function of the electrode. It can be served as an efficient bi-functional electrocatalyst with an overpotential of 160 mV for HER and 290 mV for OER to produce current densities of 10 mA cm^(-2) in the alkaline medium. And it maintains benign stability after 5,000 cycles,which rivals many recent reported noble-metal free catalysts in 1.0mol L^(-1) KOH solution. Attributed to the easy,scalable methodology and high catalytic efficiency,this work not only offers a promising monolithic catalyst but also inspires us to exploit other inexpensive,highly efficient and self-standing noble metalfree electrocatalysts for scale-up electrochemical water-splitting technology.
基金supported by the National Key Research and Development Program of China (2018YFB1502302)the National Natural Science Foundation of China (21972107, 21832004, and 21633008)+2 种基金the National Natural Science Foundation of Jiangsu Province (BK20191186)the Fundamental Research Funds for the Central UniversitiesLarge-scale Instrument and Equipment Sharing Foundation of Wuhan University。
文摘Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membrane-based fuel cells(AEMFCs) and water electrolyzers(AEMWEs). However, fundamental understanding of the mechanism for HOR/HER catalysis under alkaline media is still debatable. Here we develop an amorphous tungsten oxide clusters modified iridium-tungsten nanocrystallines(Ir WOx)which exhibited by far the highest exchange current density and mass activity, about three times higher than the commercial Pt/C toward alkaline HOR/HER. Density functional theory(DFT) calculations reveal the WOxclusters act as a pivotal role to boost reversible hydrogen electrode reactions in alkaline condition but via different mechanisms, which are, hydrogen binding energy(HBE) mechanism for HOR and bifunctional mechanism for HER. This work is expected to promote our fundamental understanding about the alkaline HOR/HER catalysis and provide a new avenue for rational design of highly efficient electrocatalysts toward HOR/HER under alkaline electrolytes.
基金supported by the National Natural Science Foundation of China (21978182)
文摘Designing of hetero-atomic doped carbon-based systems through pyrolysis of abundant element organic precursors is a novel approach to construct rational porous carbon materials.Herein,a highly-cross-linked triazine polymer is employed to fabricate N,P co-doped porous carbon(A-TDP-12)with tunable active nitrogen in the carbon framework for simultaneous enhancement of CO_(2) capture capability and Supercapacitance(SC).The synthesized A-TDP-12 possesses a typical hierarchically porous framework(micro-pores and meso-pores)with a large surface area(1332 m^(2) g^(-1))and a rich content of N(7.89 at.%)and P(0.74 at.%).It delivers a CO_(2) adsorption capacity of 1.52 and 5.68 mmol g^(-1) at 1 and 5 bar,respectively,with almost no decay after successive 8 recycles.In 6 M KOH aqueous electrolyte,A-TDP-12 exhibits a superior specific capacitance of 172.7 F g^(-1) at a current density of 1 A g^(-1).Even at a high current density of 10 A g^(-1),80%of its initial capacity still remains.This work not only offers a novel strategy for fabricating promising adsorbents and electrodes for CO_(2) uptake and SCs,but also provides new insights into design of porous carbon material for related applications.