针对传统文本情感分析获取词向量信息不充分以及情感资源未得到充分利用,导致在判断评论情感极性所依赖的文本信息不足,提出ERNIE-BiGRU-Attention民航旅客评价情感分类模型。首先,应用简单数据增强技术(easy data augmentation,EDA)对...针对传统文本情感分析获取词向量信息不充分以及情感资源未得到充分利用,导致在判断评论情感极性所依赖的文本信息不足,提出ERNIE-BiGRU-Attention民航旅客评价情感分类模型。首先,应用简单数据增强技术(easy data augmentation,EDA)对数据集进行处理。然后基于预训练语言模型(enhanced representation through knowledge integration,ERNIE)对文本进行情感知识提取。在特征提取方面,引入双向门控循环单元(bi-directional gate recurrent unit,BiGRU)与注意力机制。结果表明,该模型在分类上表现优异,综合F 1为0.9759,准确率较对比模型提升0.73%。展开更多
This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognit...This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly,the deep convolutional network is integrated with the Mediapipe framework to extract high-precision,multi-dimensional information from the key points of the human skeleton,thereby obtaining a human posture feature set.Thereafter,a double-layer BiGRU algorithm is utilized to extract multi-layer,bidirectional temporal features from the human posture feature set,and a CNN network with an exponential linear unit(ELU)activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore,a squeeze and excitation networks(SENet)module is introduced to adaptively learn the importance weights of each channel,enhancing the network’s focus on important features.Finally,comparative experiments are performed on available datasets,including the public human activity recognition using smartphone dataset(UCIHAR),the public human activity recognition 70 plus dataset(HAR70PLUS),and the independently developed home abnormal behavior recognition dataset(HABRD)created by the authors’team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%,89.42%,and 98.90%,respectively,which are 5.24%,5.83%,and 3.19%higher than the average accuracy of the five models proposed in the comparative literature,including CNN,GRU,and others.The F1-score for abnormal posture recognition reaches 98.84%(heartache),97.18%(fall),99.6%(bellyache),and 98.27%(climbing)on the self-builtHABRDdataset,thus verifying the effectiveness,generalization,and robustness of the proposed model in enhancing human posture recognition.展开更多
基金funded by the Henan Provincial Science and Technology Research Project(222102210086)the Starry Sky Creative Space Innovation Space Innovation Incubation Project of Zhengzhou University of Light Industry(2023ZCKJ211).
文摘This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly,the deep convolutional network is integrated with the Mediapipe framework to extract high-precision,multi-dimensional information from the key points of the human skeleton,thereby obtaining a human posture feature set.Thereafter,a double-layer BiGRU algorithm is utilized to extract multi-layer,bidirectional temporal features from the human posture feature set,and a CNN network with an exponential linear unit(ELU)activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore,a squeeze and excitation networks(SENet)module is introduced to adaptively learn the importance weights of each channel,enhancing the network’s focus on important features.Finally,comparative experiments are performed on available datasets,including the public human activity recognition using smartphone dataset(UCIHAR),the public human activity recognition 70 plus dataset(HAR70PLUS),and the independently developed home abnormal behavior recognition dataset(HABRD)created by the authors’team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%,89.42%,and 98.90%,respectively,which are 5.24%,5.83%,and 3.19%higher than the average accuracy of the five models proposed in the comparative literature,including CNN,GRU,and others.The F1-score for abnormal posture recognition reaches 98.84%(heartache),97.18%(fall),99.6%(bellyache),and 98.27%(climbing)on the self-builtHABRDdataset,thus verifying the effectiveness,generalization,and robustness of the proposed model in enhancing human posture recognition.