事故隐患分类能够直观反映企业安全生产管理的薄弱点,同时将直接决定企业优化安全管理工作的方向。油田安全生产过程中,隐患种类多,数据量大,单纯依赖人工方式分类及管理效率较低,且难以发掘数据中蕴含的潜在规律。基于油田安全生产的...事故隐患分类能够直观反映企业安全生产管理的薄弱点,同时将直接决定企业优化安全管理工作的方向。油田安全生产过程中,隐患种类多,数据量大,单纯依赖人工方式分类及管理效率较低,且难以发掘数据中蕴含的潜在规律。基于油田安全生产的需求及事故隐患特征,提出了一种基于BERT-BiLSTM的分类模型,用于油田安全生产隐患文本的主题自动分类,通过基于Transformer的双向编码器表示(bidirectionalencoder representations from Transformer,BERT)模型提取输入文本的字符级特征,生成全局文本信息的向量表示,再通过双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)模型对局部关键信息和上下文深层次特征进行特征提取,进而通过Softmax激活函数进行概率计算得到分类结果。通过与传统分类方法的比较表明,BERT-BiLSTM分类模型在加权平均准确率、加权平均召回率和加权平均F_(1)等指标方面均有所改善,模型与油田企业现有安全管理信息系统的有机融合将为进一步提升油田企业的事故隐患管理针对性,推动企业安全管理从事后被动反应向事前主动预防转变提供重要的技术支撑。展开更多
GNSS观测时间序列包含复杂的非线性构造运动,如地面质量荷载、模型残差、周围环境因素等。由于环境因素的复杂性,季节性信号可能具备准周期时变的特征,传统的时间序列分析模型很难模型化。因此,可以采用一种双向长短期记忆(Bidirectiona...GNSS观测时间序列包含复杂的非线性构造运动,如地面质量荷载、模型残差、周围环境因素等。由于环境因素的复杂性,季节性信号可能具备准周期时变的特征,传统的时间序列分析模型很难模型化。因此,可以采用一种双向长短期记忆(Bidirectional Long Short-Term Memory,BiLSTM)循环神经网络与变分模态分解(Variational Mode Decomposition,VMD)联合的信号重构方法。首先利用VMD强大的分解能力将GNSS信号进行频域剖分并将其分为多项子信号和噪声项,再基于BiLSTM强大的学习能力对GNSS信号进行训练建模。结果表明,BiLSTM+VMD模型能充分挖掘信号的时频域特征,提高信号重构的精度和稳定性,GNSS N、E、U三分量重构结果均方根误差(Root Mean Squared Error,RMSE)都表现出不同程度的降低,尤其水平方向效果更为显著,相比EMD与VMD方法,E方向离散度分别降低了61%和19%,N方向离散度分别降低了20%和14%。这为GNSS观测时间序列中信号提取与模型参数估计提供了一个有价值的模型。展开更多
确定矿山开采沉陷边界有助于评估矿区生产活动对周围环境和基础设施的潜在影响,为制定有效的灾害防控措施提供技术手段。充分考虑到概率积分法等传统方法在划定矿山开采沉陷边界时的不足,采用在获取矿区大范围高精度地表沉降数据方面具...确定矿山开采沉陷边界有助于评估矿区生产活动对周围环境和基础设施的潜在影响,为制定有效的灾害防控措施提供技术手段。充分考虑到概率积分法等传统方法在划定矿山开采沉陷边界时的不足,采用在获取矿区大范围高精度地表沉降数据方面具有优势的SBAS-InSAR技术,并结合淘金算法(Gold Rush Optimizer,GRO)优化双向长短期记忆(Bidirectional Long Short Term Memory,BiLSTM)模型的预测方法,实现矿区开采沉陷边界划定。以红会煤矿为研究对象,依据SBAS-InSAR技术提取矿区沉降边缘高相干点在2018-11-29—2020-02-04时间段内共37期沉降数据,以下沉10 mm等值线划定沉陷边界,利用GRO-BiLSTM优化模型预测高相干点的地表沉降值,并将预测结果与LSTM和BiLSTM模型预测结果进行了对比分析。结果表明:GRO-BiLSTM模型在整体测试集中均方根误差为3.204mm,比LSTM和BiLSTM模型分别降低了22.16%和8.21%;平均绝对误差为2.062 mm,比LSTM和BiLSTM模型分别降低了23.96%和5.43%,表明该方法可以有效监测和预测矿区边界地区的沉陷状况。展开更多
针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term m...针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的锂电池SOH估计方法。首先,从电池充电阶段数据中提取五类HFs。接着,利用核主成分分析法(kernel principal component analysis,KPCA)获取HFs的关键健康因子。最后,应用GWO-BiLSTM模型对关键健康因子和SOH之间的映射关系进行动态建模,实现锂电池SOH的估计。利用NASA电池老化数据集进行验证,结果表明,所提出方法能够准确估计锂电池的SOH,均方根误差保持在1%以内,具有较高的估计精度和鲁棒性。展开更多
文摘事故隐患分类能够直观反映企业安全生产管理的薄弱点,同时将直接决定企业优化安全管理工作的方向。油田安全生产过程中,隐患种类多,数据量大,单纯依赖人工方式分类及管理效率较低,且难以发掘数据中蕴含的潜在规律。基于油田安全生产的需求及事故隐患特征,提出了一种基于BERT-BiLSTM的分类模型,用于油田安全生产隐患文本的主题自动分类,通过基于Transformer的双向编码器表示(bidirectionalencoder representations from Transformer,BERT)模型提取输入文本的字符级特征,生成全局文本信息的向量表示,再通过双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)模型对局部关键信息和上下文深层次特征进行特征提取,进而通过Softmax激活函数进行概率计算得到分类结果。通过与传统分类方法的比较表明,BERT-BiLSTM分类模型在加权平均准确率、加权平均召回率和加权平均F_(1)等指标方面均有所改善,模型与油田企业现有安全管理信息系统的有机融合将为进一步提升油田企业的事故隐患管理针对性,推动企业安全管理从事后被动反应向事前主动预防转变提供重要的技术支撑。
文摘GNSS观测时间序列包含复杂的非线性构造运动,如地面质量荷载、模型残差、周围环境因素等。由于环境因素的复杂性,季节性信号可能具备准周期时变的特征,传统的时间序列分析模型很难模型化。因此,可以采用一种双向长短期记忆(Bidirectional Long Short-Term Memory,BiLSTM)循环神经网络与变分模态分解(Variational Mode Decomposition,VMD)联合的信号重构方法。首先利用VMD强大的分解能力将GNSS信号进行频域剖分并将其分为多项子信号和噪声项,再基于BiLSTM强大的学习能力对GNSS信号进行训练建模。结果表明,BiLSTM+VMD模型能充分挖掘信号的时频域特征,提高信号重构的精度和稳定性,GNSS N、E、U三分量重构结果均方根误差(Root Mean Squared Error,RMSE)都表现出不同程度的降低,尤其水平方向效果更为显著,相比EMD与VMD方法,E方向离散度分别降低了61%和19%,N方向离散度分别降低了20%和14%。这为GNSS观测时间序列中信号提取与模型参数估计提供了一个有价值的模型。
文摘确定矿山开采沉陷边界有助于评估矿区生产活动对周围环境和基础设施的潜在影响,为制定有效的灾害防控措施提供技术手段。充分考虑到概率积分法等传统方法在划定矿山开采沉陷边界时的不足,采用在获取矿区大范围高精度地表沉降数据方面具有优势的SBAS-InSAR技术,并结合淘金算法(Gold Rush Optimizer,GRO)优化双向长短期记忆(Bidirectional Long Short Term Memory,BiLSTM)模型的预测方法,实现矿区开采沉陷边界划定。以红会煤矿为研究对象,依据SBAS-InSAR技术提取矿区沉降边缘高相干点在2018-11-29—2020-02-04时间段内共37期沉降数据,以下沉10 mm等值线划定沉陷边界,利用GRO-BiLSTM优化模型预测高相干点的地表沉降值,并将预测结果与LSTM和BiLSTM模型预测结果进行了对比分析。结果表明:GRO-BiLSTM模型在整体测试集中均方根误差为3.204mm,比LSTM和BiLSTM模型分别降低了22.16%和8.21%;平均绝对误差为2.062 mm,比LSTM和BiLSTM模型分别降低了23.96%和5.43%,表明该方法可以有效监测和预测矿区边界地区的沉陷状况。
文摘针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的锂电池SOH估计方法。首先,从电池充电阶段数据中提取五类HFs。接着,利用核主成分分析法(kernel principal component analysis,KPCA)获取HFs的关键健康因子。最后,应用GWO-BiLSTM模型对关键健康因子和SOH之间的映射关系进行动态建模,实现锂电池SOH的估计。利用NASA电池老化数据集进行验证,结果表明,所提出方法能够准确估计锂电池的SOH,均方根误差保持在1%以内,具有较高的估计精度和鲁棒性。