The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significant...The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane construct an arc-basin system. New SHRIMP ages showed that this arc-basin system developed on the northern margin of the Yangtze craton in the Neoproterozoic (846-776 Ma), and this arc-basin system is in agreement with the tectonic processes of Rodinia in the Neoproterzoic.展开更多
Compared with the major and trace elements of typical boninite, the metabasalts collected from the Nanfanba (南范坝)-Miaowanli (庙湾里) region in the Bikou (碧口) block could be treated as boninite characterized...Compared with the major and trace elements of typical boninite, the metabasalts collected from the Nanfanba (南范坝)-Miaowanli (庙湾里) region in the Bikou (碧口) block could be treated as boninite characterized by low-Si, low-Ti, low-P, high-Mg^2 and high Al2O3/TiO2, consistent with geochemical features of boninite. The normal mid-ocean ridge basalt (N-MORB) normalized spider diagram displays fairly depleted high field strong elements (HFSE) (Zr, Y, Ti). Enriched refractory elements (Cr, Co, Ni) as well as light rare earth elements (LREE)-depleted chondrite-normalized REE distribution patterns suggest the boninitic magmas are derived from an extremely depleted mantle wedge in the presence of a hydrous fluid, meanwhile signifying the source region had previously undergone a high degree partial melting process yielding primary magmas with enriched large ion lithophile elements (LILE). In addition, almost all the samples in the Nb-Zr-Y and Ti-Zr-Y discrimination diagrams were plotted in the island arc basalt (IAB) field. Coupled with the island arc tholeiitic (IAT) basalt in the study region, therefore, the geochemical characteristics of the studied rocks indicate the meta-basalts probably occurred in a fore-arc subduction setting. This conclusion may be of great significance for the further study of the tectonic background of the Bikou volcanism.展开更多
The Blkou Group on the Shaanxi-Gansu-Sichuan border is composed of Mid-Late Proterozoic metamorphosed bimodal volcanic rocks and flysch sediments. Its metamorphism may be divided into the blueschist and greenschist fa...The Blkou Group on the Shaanxi-Gansu-Sichuan border is composed of Mid-Late Proterozoic metamorphosed bimodal volcanic rocks and flysch sediments. Its metamorphism may be divided into the blueschist and greenschist facies. Three metamorphlc zones, i.e. zones A, B, and C, may be distinguished on the basis of the field distribution of metamorphlc rocks and the variation of b0 values of muscovite. Blueschists are characterized by coexistence of sodic amphiboles and epidote and occur as stripes or relict patches in extensive greenschists of zone A. Studies of metamorphic minerals such as amphiboles, chlorite, epidote and muscovite and their textural relationships indicate that blueschists and greenschists were not formed under the same metamorphic physico-chemical conditions. The blueschist facies was formed at temperatures of 300-400℃ and pressures of 0.5-0.6 GPa. The greenschist facies in zones A and B has similar temperatures but its pressure is only 0.4 GPa or so. The transition from the blueschist to greenschist facies is a nearly isothermal uplift process. The rock and mineral assemblages of the Bikou Group indicate that the blueschist facies metamorphism of the group might be related to crustal thickening or A-subduction accompanying the closure of an intracontinental small ocean basin.展开更多
The post-collisional Yangba granodiorite intruded into the Bikou metasedimentary-volcanic group, southern Mianlue Suture, central China. The host granodiorites contain many mafic microgranular enclaves which have acic...The post-collisional Yangba granodiorite intruded into the Bikou metasedimentary-volcanic group, southern Mianlue Suture, central China. The host granodiorites contain many mafic microgranular enclaves which have acicular apatite, phenocrysts of host granodiorites, implying that the enclaves have been incorporated as magma globules into host granodioritic magma and undergone rapid cooling. The variation trends of major and trace ele- ments between enclaves and host rocks suggest a mixing and mingling process with respect to their petrogenesis. The mafic microgranular enclaves are characterized by shoshonite with SiO2≤63%, σ (4.54–6.18)>3.3, high K2O content (4.22%–6.04%), K2O/Na2O>1; in the K2O-SiO2 diagram, all the samples plot in the shoshonite field, which are enriched in LILE and LREE, with obvious Nb, Ta negative anomalies, indicating a subducting fluid-metasomatised mantle source. Zircon LA-ICP-MS dating of the granodiorites yielded an age of 215.4±8.3 Ma, indicating they were formed during the late-orogenic or post-collisional stage (≤242±21 Ma) of the South Qinling Mountain Belt. The host granodiorites have many close compositional similarities to high-silica adakites from su- pra-subduction zone setting, but tend to have a higher concentration of K2O (3.22%–3.84%) and Mg#. Chon- drite-normalized rare-earth element patterns are characterized by high ratios of (La/Yb)N, the extreme HREE deple- tion and a lack of significant Eu anomalies. In conjunction with the high abundances of Ba and Sr as well as the low abundances of Y and HREE, these patterns suggest a feldspar-poor, garnet ± amphibole-rich fractionation mineral assemblage. High Mg# values demonstrate that the host granodiorites were contaminated by enclave magma. On a whole, integrated geological and geochemical studies suggested the Yangba granodiorites and their mafic micro- granular enclaves resulted from mixing of enriched mantle-derived shoshonitic magma and thickened lower crust-derived felsic magma. In combination with previous studies we consider that the Yangba granodiorites were likely to represent underplating activities and delamination of the lower crust during the late orogenic stage in west- ern Qinling Orogenic Belt.展开更多
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These gran...This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.展开更多
The geodynamic setting of the Bikou volcanic group is a critical question to trace the Precambrain tectonic framework and evolution for the Yangtze plate. This study has suggested that the Bikou volcanic group is comp...The geodynamic setting of the Bikou volcanic group is a critical question to trace the Precambrain tectonic framework and evolution for the Yangtze plate. This study has suggested that the Bikou volcanic group is composed of several residual oceanic crust units: MORB (mid-ocean ridge basalt), Alk-OIB (alkaline ocean island basalt) and Th-OIB (tholeiitic ocean island basalt) as well as subduction-related volcanic rocks. According to field observation, those distinct rocks occurred collectively in form of tectonic contact, implying that the Bikou volcanic group was an ophiolitic mélange. Coupled with geochronological data, a perished oceanic basin at the northern margin of the Yangtze block during Neoproterozoic was tested by this ophiolitic mélange. Meanwhile, the isogeochemical data suggest that the ocean occurred in the Southern Hemisphere identical to Indian, South Atlantic and South Pacific oceans in terms of their Dupal anomalies, and the original source of the rocks could be probably mixing by EMⅠand EMⅡ component caused by dehydration melting of subducting oceanic crust during subduction process. On the basis of geochemical characteristics of the studied rocks, the Bikou volcanic group could imply that a partial breakup event occurred in the northern margin of Yangtze plate during the Neoproterozoic era.展开更多
BIKOU Group comprises spilite and keratophyre, which are lower-grade (greenschist facies) metamorphosed and interbedded by main basic rocks at the bottom and acid rocks on the top. Some copper deposits and ore spots s...BIKOU Group comprises spilite and keratophyre, which are lower-grade (greenschist facies) metamorphosed and interbedded by main basic rocks at the bottom and acid rocks on the top. Some copper deposits and ore spots such as Damaoping, Faziba and Yangba have been found in spilite stratum. Becauseresearches have not been well carried out on geology of these ore deposits, some basic problems concerning ore source, characteristics of ore-forming fluid and mineralization age, etc. remain unsolved. Thispaper mainly discusses the mineralization mechanism and mineralization age.展开更多
YANGBA Formation of Bikou Group is located in south Qinling, a famous orogenic belt separating Chinesecontinent into two parts: North China plate and Yangzi plate. The Yangba Formation comprises the maficand felsic vo...YANGBA Formation of Bikou Group is located in south Qinling, a famous orogenic belt separating Chinesecontinent into two parts: North China plate and Yangzi plate. The Yangba Formation comprises the maficand felsic volcanic rocks formed in an ancient seafloor environment during the Proterozoic era. The suitesof mafic and felsic volcanic rocks are petrochemically divided into tholeiite and calc-alkaline dacite, respectively, showing characteristics of bimodal volcanic rock mainly by lithology and major element content, and a lack of typical intermediate rocks. These signatures indicate that the volcanic rocks of YangbaFormation were generated in rift tectonics setting. The tholeiites of Yangba Formation are similar in trace element content to mid-ridge basalt, displaying a slight depletion to enrichment in light rare earth elements (LREE’s) (La/Yb_n = 0.6-1.4), slightfractionation between LREE (La/Sm_n =0.55-1.14) and HREE (Gd/Lu_n = 1.09-1.50), and relative flat patterns in whole. The decoupling of Eu to its neighboring elements in two samples likely indicates an effect of fractional crystallization in magma evolution. The La-La/Sm, Ni-La, Ni-Th, Ni-Ta,and Ni-Hf diagrams all support a conclusion that the mafic rocks are generated by partial melting pro-展开更多
基金supports from the National Natural Science Foundation of China(grants 40172071 and 40211120151 to Yan Quanren)the Ministry of Science and Technology of the People’s Republic of China(grant 2202CB412608 to Wang Zongqi)+2 种基金the China Geological Survey(grant DKD2001002 to Wang Zongqi)the University of Nevada Las Vegas(to Hanson)and the Geological Society of America(to Druschke)are gratefully appreciated.
文摘The Bikou volcanic terrane is predominated by subalkaline tholeiitic lavas. Rock samples display lower initial ratios of Sr and Nd, 0.701248-0.704413 and 0.511080-0.512341 respectively. 207Pb and 208Pb are significantly enriched in the lavas. Most samples have positive εNd, which indicates that the magma was derived from EM-type mantle source, while a few samples with negative εNd indicate that there was contamination in the magma evolution. Magma differentiation is demonstrated by variations of LREE and LILE from depletion to enrichment. Additionally, normalized REE patterns and trace elements showed that lavas from the Bikou volcanic terrane have similar characteristics to those of basalts in arc settings caused by subduction and collision. Analyses showed that the Bikou volcanic terrane is a volcanic arc. New evidence proved that the Hengdan Group, north of the Bikou arc, is a turbidite terrane filling a forearc basin. Consequently, the Bikou volcanic terrane and the Hengdan turbidite terrane construct an arc-basin system. New SHRIMP ages showed that this arc-basin system developed on the northern margin of the Yangtze craton in the Neoproterozoic (846-776 Ma), and this arc-basin system is in agreement with the tectonic processes of Rodinia in the Neoproterzoic.
基金This paper is supported by the National Natural Science Foundation ofChina (No .40234041) .
文摘Compared with the major and trace elements of typical boninite, the metabasalts collected from the Nanfanba (南范坝)-Miaowanli (庙湾里) region in the Bikou (碧口) block could be treated as boninite characterized by low-Si, low-Ti, low-P, high-Mg^2 and high Al2O3/TiO2, consistent with geochemical features of boninite. The normal mid-ocean ridge basalt (N-MORB) normalized spider diagram displays fairly depleted high field strong elements (HFSE) (Zr, Y, Ti). Enriched refractory elements (Cr, Co, Ni) as well as light rare earth elements (LREE)-depleted chondrite-normalized REE distribution patterns suggest the boninitic magmas are derived from an extremely depleted mantle wedge in the presence of a hydrous fluid, meanwhile signifying the source region had previously undergone a high degree partial melting process yielding primary magmas with enriched large ion lithophile elements (LILE). In addition, almost all the samples in the Nb-Zr-Y and Ti-Zr-Y discrimination diagrams were plotted in the island arc basalt (IAB) field. Coupled with the island arc tholeiitic (IAT) basalt in the study region, therefore, the geochemical characteristics of the studied rocks indicate the meta-basalts probably occurred in a fore-arc subduction setting. This conclusion may be of great significance for the further study of the tectonic background of the Bikou volcanism.
基金This research is a project(No.49070098)supported by the National Natural Science Foundation of China
文摘The Blkou Group on the Shaanxi-Gansu-Sichuan border is composed of Mid-Late Proterozoic metamorphosed bimodal volcanic rocks and flysch sediments. Its metamorphism may be divided into the blueschist and greenschist facies. Three metamorphlc zones, i.e. zones A, B, and C, may be distinguished on the basis of the field distribution of metamorphlc rocks and the variation of b0 values of muscovite. Blueschists are characterized by coexistence of sodic amphiboles and epidote and occur as stripes or relict patches in extensive greenschists of zone A. Studies of metamorphic minerals such as amphiboles, chlorite, epidote and muscovite and their textural relationships indicate that blueschists and greenschists were not formed under the same metamorphic physico-chemical conditions. The blueschist facies was formed at temperatures of 300-400℃ and pressures of 0.5-0.6 GPa. The greenschist facies in zones A and B has similar temperatures but its pressure is only 0.4 GPa or so. The transition from the blueschist to greenschist facies is a nearly isothermal uplift process. The rock and mineral assemblages of the Bikou Group indicate that the blueschist facies metamorphism of the group might be related to crustal thickening or A-subduction accompanying the closure of an intracontinental small ocean basin.
基金the National Natural Science Foundation of China(Grant Nos.40572050,40272042 and 40234041);the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education, ER.China.
文摘The post-collisional Yangba granodiorite intruded into the Bikou metasedimentary-volcanic group, southern Mianlue Suture, central China. The host granodiorites contain many mafic microgranular enclaves which have acicular apatite, phenocrysts of host granodiorites, implying that the enclaves have been incorporated as magma globules into host granodioritic magma and undergone rapid cooling. The variation trends of major and trace ele- ments between enclaves and host rocks suggest a mixing and mingling process with respect to their petrogenesis. The mafic microgranular enclaves are characterized by shoshonite with SiO2≤63%, σ (4.54–6.18)>3.3, high K2O content (4.22%–6.04%), K2O/Na2O>1; in the K2O-SiO2 diagram, all the samples plot in the shoshonite field, which are enriched in LILE and LREE, with obvious Nb, Ta negative anomalies, indicating a subducting fluid-metasomatised mantle source. Zircon LA-ICP-MS dating of the granodiorites yielded an age of 215.4±8.3 Ma, indicating they were formed during the late-orogenic or post-collisional stage (≤242±21 Ma) of the South Qinling Mountain Belt. The host granodiorites have many close compositional similarities to high-silica adakites from su- pra-subduction zone setting, but tend to have a higher concentration of K2O (3.22%–3.84%) and Mg#. Chon- drite-normalized rare-earth element patterns are characterized by high ratios of (La/Yb)N, the extreme HREE deple- tion and a lack of significant Eu anomalies. In conjunction with the high abundances of Ba and Sr as well as the low abundances of Y and HREE, these patterns suggest a feldspar-poor, garnet ± amphibole-rich fractionation mineral assemblage. High Mg# values demonstrate that the host granodiorites were contaminated by enclave magma. On a whole, integrated geological and geochemical studies suggested the Yangba granodiorites and their mafic micro- granular enclaves resulted from mixing of enriched mantle-derived shoshonitic magma and thickened lower crust-derived felsic magma. In combination with previous studies we consider that the Yangba granodiorites were likely to represent underplating activities and delamination of the lower crust during the late orogenic stage in west- ern Qinling Orogenic Belt.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40234052 and 40521001)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0441)
文摘This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40234041 and 40272042)
文摘The geodynamic setting of the Bikou volcanic group is a critical question to trace the Precambrain tectonic framework and evolution for the Yangtze plate. This study has suggested that the Bikou volcanic group is composed of several residual oceanic crust units: MORB (mid-ocean ridge basalt), Alk-OIB (alkaline ocean island basalt) and Th-OIB (tholeiitic ocean island basalt) as well as subduction-related volcanic rocks. According to field observation, those distinct rocks occurred collectively in form of tectonic contact, implying that the Bikou volcanic group was an ophiolitic mélange. Coupled with geochronological data, a perished oceanic basin at the northern margin of the Yangtze block during Neoproterozoic was tested by this ophiolitic mélange. Meanwhile, the isogeochemical data suggest that the ocean occurred in the Southern Hemisphere identical to Indian, South Atlantic and South Pacific oceans in terms of their Dupal anomalies, and the original source of the rocks could be probably mixing by EMⅠand EMⅡ component caused by dehydration melting of subducting oceanic crust during subduction process. On the basis of geochemical characteristics of the studied rocks, the Bikou volcanic group could imply that a partial breakup event occurred in the northern margin of Yangtze plate during the Neoproterozoic era.
文摘BIKOU Group comprises spilite and keratophyre, which are lower-grade (greenschist facies) metamorphosed and interbedded by main basic rocks at the bottom and acid rocks on the top. Some copper deposits and ore spots such as Damaoping, Faziba and Yangba have been found in spilite stratum. Becauseresearches have not been well carried out on geology of these ore deposits, some basic problems concerning ore source, characteristics of ore-forming fluid and mineralization age, etc. remain unsolved. Thispaper mainly discusses the mineralization mechanism and mineralization age.
文摘YANGBA Formation of Bikou Group is located in south Qinling, a famous orogenic belt separating Chinesecontinent into two parts: North China plate and Yangzi plate. The Yangba Formation comprises the maficand felsic volcanic rocks formed in an ancient seafloor environment during the Proterozoic era. The suitesof mafic and felsic volcanic rocks are petrochemically divided into tholeiite and calc-alkaline dacite, respectively, showing characteristics of bimodal volcanic rock mainly by lithology and major element content, and a lack of typical intermediate rocks. These signatures indicate that the volcanic rocks of YangbaFormation were generated in rift tectonics setting. The tholeiites of Yangba Formation are similar in trace element content to mid-ridge basalt, displaying a slight depletion to enrichment in light rare earth elements (LREE’s) (La/Yb_n = 0.6-1.4), slightfractionation between LREE (La/Sm_n =0.55-1.14) and HREE (Gd/Lu_n = 1.09-1.50), and relative flat patterns in whole. The decoupling of Eu to its neighboring elements in two samples likely indicates an effect of fractional crystallization in magma evolution. The La-La/Sm, Ni-La, Ni-Th, Ni-Ta,and Ni-Hf diagrams all support a conclusion that the mafic rocks are generated by partial melting pro-