期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
Bioinspired Multifunctional Self-Sensing Actuated Gradient Hydrogel for Soft-Hard Robot Remote Interaction
1
作者 He Liu Haoxiang Chu +10 位作者 Hailiang Yuan Deliang Li Weisi Deng Zhiwei Fu Ruonan Liu Yiying Liu Yixuan Han Yanpeng Wang Yue Zhao Xiaoyu Cui Ye Tian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期139-152,共14页
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sens... The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions. 展开更多
关键词 SELF-SENSING Gradient structure bioinspired actuator Hydrogel sensor Remote interaction
下载PDF
Bioinspired directional structures for inhibiting wetting on super-melt-philic surfaces above 1200°C
2
作者 Hujun Wang Xiuyuan Zhao +4 位作者 Zhengcan Xie Biao Yang Jing Zheng Kai Yin Zhongrong Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期337-346,共10页
Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing d... Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures. 展开更多
关键词 directional structures bioinspired design inhibiting wetting super-melt-philic SUPERHYDROPHOBIC
下载PDF
Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning
3
作者 Xingzi Yang Wei Gao +1 位作者 Xiaodu Wang Xiaowei Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1299-1313,共15页
The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performa... The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process. 展开更多
关键词 bioinspired nanocomposite computational model machine learning finite element material interface
下载PDF
MXenes for Bioinspired Soft Actuators:Advancements in Angle-Independent Structural Colors and Beyond
4
作者 Siavash Iravani Rajender S.Varma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期18-34,共17页
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural mo... Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics. 展开更多
关键词 MXenes MXene-based composites bioinspired soft robotics Angle-independent structural color
下载PDF
Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces 被引量:11
5
作者 ZHU Zhuo WU Jun-rui +3 位作者 WU Zhi-peng WU Ting-ni HE Yu-chun YIN Kai 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3882-3906,共25页
The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil po... The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil pollution and so on. The unique wettability of organisms gives inspiration to design and create new interface materials. This review focuses on the recent research progress of femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. This review starts with a presentation of the related background including the advantages of femtosecond laser and wettability theoretical basis. Then, organisms with unique wettability in nature, the preparation of superhydrophobic or underwater superoleophobic surfaces by femtosecond lasers on different materials, and their related important applications are introduced. Finally, the current challenges and future prospects with regard to this field are provided. 展开更多
关键词 femtosecond laser SUPERHYDROPHOBIC underwater superoleophobic bioinspired WETTABILITY
下载PDF
DEM Numerical Simulation of Abrasive Wear Characteristics of a Bioinspired Ridged Surface 被引量:10
6
作者 Mohammad Almagzoub Mohammad Carlo Menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期175-181,共7页
This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged... This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged Surface (BRS) can potentiallyimprove wear resistance of soil-engaging components used in agricultural machinery and to validate numerical simulationsperformed using software based on the Discrete Element Method (DEM).The wear performance of the BRS is experimentallydetermined and also compared with a conventional flat surface.Different size of soil particles and relative velocities between theabrasive sand and the testing surfaces are used.Comparative results show that the numerical simulations are in agreement withthe experimental results and support the hypothesis that abrasive wear is greatly reduced by substituting a conventional flatsurface with the BRS. 展开更多
关键词 bioinspired ridged surface abrasive wear numerical simulation Discrete Element Method (DEM)
下载PDF
Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing 被引量:7
7
作者 Yuqing Liang Huiru Xu +2 位作者 Zhenlong Li Aodi Zhangji Baolin Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期256-274,共19页
Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invas... Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invasive wound closure and wound healing.Motivated by the adhesive mechanism of mussel and brown algae,bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate(SA),gelatin(GT)and protocatechualdehyde,with ferric ions added,for sutureless post-wound-closure.The dynamic hydrogel cross-linked through Schiff base bond,catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA,endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure,injectability and self-healing capacity,and repeated closure of reopened wounds.Moreover,the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned,which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery.Besides,the hydrogels present good biocompatibility,near-infrared-assisted photothermal antibacterial activity,antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect.The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions,indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant. 展开更多
关键词 bioinspired injectable hydrogel Tissue sealant Temperature-dependent adhesion Reversible adhesion Wound healing
下载PDF
Bioinspired All‑Fibrous Directional Moisture‑Wicking Electronic Skins for Biomechanical Energy Harvesting and All‑Range Health Sensing 被引量:4
8
作者 Chuanwei Zhi Shuo Shi +5 位作者 Shuai Zhang Yifan Si Jieqiong Yang Shuo Meng Bin Fei Jinlian Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期277-293,共17页
Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this... Electronic skins can monitor minute physiological signal variations in the human skins and represent the body’s state,showing an emerging trend for alternative medical diagnostics and human-machine interfaces.In this study,we designed a bioinspired directional moisture-wicking electronic skin(DMWES)based on the construction of heterogeneous fibrous membranes and the conductive MXene/CNTs electrospraying layer.Unidirectional moisture transfer was successfully realized by surface energy gradient and push-pull effect via the design of distinct hydrophobic-hydrophilic difference,which can spontaneously absorb sweat from the skin.The DMWES membrane showed excellent comprehensive pressure sensing performance,high sensitivity(maximum sensitivity of 548.09 kPa^(−1)),wide linear range,rapid response and recovery time.In addition,the single-electrode triboelectric nanogenerator based on the DMWES can deliver a high areal power density of 21.6μW m^(−2) and good cycling stability in high pressure energy harvesting.Moreover,the superior pressure sensing and triboelectric performance enabled the DMWES for all-range healthcare sensing,including accurate pulse monitoring,voice recognition,and gait recognition.This work will help to boost the development of the next-generation breathable electronic skins in the applications of AI,human-machine interaction,and soft robots. 展开更多
关键词 bioinspired Electrospinning Electronic skin Directional moisture wicking MXene
下载PDF
Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color 被引量:5
9
作者 Pan Xue Yuanhao Chen +7 位作者 Yiyi Xu Cristian Valenzuela Xuan Zhang Hari Krishna Bisoyi Xiao Yang Ling Wang Xinhua Xu Quan Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期1-13,共13页
In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it... In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines. 展开更多
关键词 bioinspired soft actuator Angle-independent structural color MXene liquid crystals Soft robotics
下载PDF
Bioinspired soft actuators with highly ordered skeletal muscle structures 被引量:3
10
作者 Yingjie Wang Chunbao Liu +1 位作者 Luquan Ren Lei Ren 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第1期174-188,共15页
Mammals such as humans develop skeletal muscles composed of muscle fibers and connective tissue,which have mechanical properties that enable power output with three-dimensional motion when activated.Artificial muscle-... Mammals such as humans develop skeletal muscles composed of muscle fibers and connective tissue,which have mechanical properties that enable power output with three-dimensional motion when activated.Artificial muscle-like actuators developed to date,such as the McKibben artificial muscle,often focus sole contractile elements and have rarely addressed the contribution of flexible connective tissue that forms an integral part of the structure and morphology of biological muscle.Herein,we present a class of pneumatic muscle-like actuators,termed highly mimetic skeletal muscle(HimiSK)actuator,that consist of parallelly arranged contractile units in a flexible matrix inspired by ultrasonic measurements on skeletal muscle.The contractile units act as a muscle fiber to produce active shortening force,and the flexible matrix functions as connective tissue to generate passive deformation.The application of positive pressure to the contractile units can produce a linear contraction and force.In this actuator,we assign different flexible materials as contractile units and a flexible matrix,thus forming five mold actuators.These actuators feature three-dimensional motion on activation and present both intrinsic force-velocity and force-length characteristics that closely resebmle those of a biological muscle.High output and tetanic force produced by harder contractile units improve the maximum output force by up to about 41.3%and the tetanic force by up to about 168%.Moreover,high displacement and velocity can be generated by a softer flexible matrix,with the improvement of maximum displacement up to about 33.3%and velocity up to about 73%.The results demonstrate that contractile units play a crucial role in force generation,while the flexible matrix has a significant impact on force transmission and deformation;the final force,velocity,displacement,and three-dimensional motion results from the interplay of contractile units,fluid and flexible matrix.Our approach introduces a model of the presented HimiSK actuators to better understand the mechanical behaviors,force generation,and transmission in bioinspired soft actuators,and highlights the importance of using flexible connective tissue to form a structure and configuration similar to that of skeletal muscle,which has potential usefulness in the design of effective artificial muscle. 展开更多
关键词 bioinspired Soft robotics ACTUATOR Skeletal muscle
下载PDF
Self-Exfoliation of Flake Graphite for Bioinspired Compositing with Aramid Nanofiber toward Integration of Mechanical and Thermoconductive Properties 被引量:2
11
作者 Limei Huang Guang Xiao +4 位作者 Yunjing Wang Hao Li Yahong Zhou Lei Jiang Jianfeng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期235-247,共13页
Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductilit... Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network.A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles,generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies,such as ultrasonication,high-shear mixing and ball milling.Inspired by nacre,a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol-gel-film transformation.It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers,but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets. 展开更多
关键词 Graphene Aramid nanofiber Self-grinding exfoliation bioinspired structure Functional material
下载PDF
Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers:Lessons from nature 被引量:2
12
作者 Yanyan Liu Qin Yu +7 位作者 Guoqi Tan Mingyang Zhang Enling Tang Shaogang Wang Zengqian Liu Qiang Wang Zhefeng Zhang Robert O.Ritchie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期869-881,共13页
Natural fish scales demonstrate outstanding mechanical efficiency owing to their elaborate architectures and thereby may serve as ideal prototypes for the architectural design of man-made materials.Here bioinspired ma... Natural fish scales demonstrate outstanding mechanical efficiency owing to their elaborate architectures and thereby may serve as ideal prototypes for the architectural design of man-made materials.Here bioinspired magnesium composites with fish-scale-like orthogonal plywood and double-Bouligand architectures were developed by pressureless infiltration of a magnesium melt into the woven contextures of continuous titanium fibers.The composites exhibit enhanced strength and work-hardening ability compared to those estimated from a simple mixture of their constituents at ambient to elevated temperatures.In particular,the double-Bouligand architecture can effectively deflect cracking paths,alleviate strain localization,and adaptively reorient titanium fibers within the magnesium matrix during the deformation of the composite,representing a successful implementation of the property-optimizing mechanisms in fish scales.The strength of the composites,specifically the effect of their bioinspired architectures,was interpreted based on the adaptation of classical laminate theory.This study may offer a feasible approach for developing new bioinspired metal-matrix composites with improved performance and provide theoretical guidance for their architectural designs. 展开更多
关键词 Magnesium composites bioinspired materials Fish scales Bouligand-type architecture Structural reorientation
下载PDF
Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications 被引量:16
13
作者 Yiyuan Zhang Yunlong Jiao +5 位作者 Chuanzong Li Chao Chen Jiawen Li Yanlei Hu Dong Wu Jiaru Chu 《International Journal of Extreme Manufacturing》 2020年第3期42-62,共21页
manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel proc... manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision,simplicity,and compatibility for diverse materials in comparison with other methods(e.g.ion etching,sol-gel process,chemical vapor deposition,template method,and self-assembly).These biomimetic micro/nanostructured surfaces are of significant interest for academic and industrial research due to their wide range of potential applications,including self-cleaning surfaces,oil-water separation,and fog collection.This review presents the inherent relationship between natural organisms,fabrication methods,micro/nanostructures and their potential applications.Thereafter,we throw a list of current fabrication strategies so as to highlight the advantages of FLDW in manufacturing bioinspired microstructured surfaces.Subsequently,we summarize a variety of typical bioinspired designs(e.g.lotus leaf,pitcher plant,rice leaf,butterfly wings,etc)for diverse multifunctional micro/nanostructures through extreme femtosecond laser processing technology.Based on the principle of interfacial chemistry and geometrical optics,we discuss the potential applications of these functional micro/nanostructures and assess the underlying challenges and opportunities in the extreme fabrication of bioinspired micro/nanostructures by FLDW.This review concludes with a follow up and an outlook of femtosecond laser processing in biomimetic domains. 展开更多
关键词 femtosecond laser direct writing multiscale micro/nanostructures extreme fabrication bioinspired applications
下载PDF
Bioinspired Functional Surfaces for Medical Devices 被引量:1
14
作者 Liwen Zhang Guang Liu +3 位作者 Yurun Guo Yan Wang Deyuan Zhang Huawei Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期37-50,共14页
Medical devices are a major component of precision medicine and play a key role in medical treatment,particularly with the rapid development of minimally invasive surgery and wearable devices.Their tissue contact prop... Medical devices are a major component of precision medicine and play a key role in medical treatment,particularly with the rapid development of minimally invasive surgery and wearable devices.Their tissue contact properties strongly affect device performance and patient health(e.g.,heat coagulation and slipperiness on surgical graspers).However,the design and optimization of these device surfaces are still indistinct and have no supporting principles.Under such conditions,natural surfaces with various unique functions can provide solutions.This review summarizes the current progress in natural functional surfaces for medical devices,including ultra-slipperiness and strong wet attachment.The underlying mechanisms of these surfaces are attributed to their coupling effects and featured micronano structures.Depending on various medical requirements,adaptable designs and fabrication methods have been developed.Additionally,various medical device surfaces have been validated to achieve enhanced contact properties.Based on these studies,a more promising future for medical devices can be achieved for enhanced precision medicine and human health. 展开更多
关键词 bioinspired functional surfaces Medical devices Wet attachment Interfacial liquid Micro-nano structures Wearable devices
下载PDF
Self-shaping of bioinspired chiral composites 被引量:1
15
作者 Qing-Qing Rong Yu-Hong Cui +2 位作者 Takahiro Shimada Jian-Shan Wang Takayuki Kitamura 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期533-539,共7页
Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising appli... Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of selfshaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites. 展开更多
关键词 Self-shaping · bioinspired chiral composites ·Micro/nanohelices · Tendrils
下载PDF
Mechanics of bioinspired imaging systems 被引量:1
16
作者 Zhengwei Li Yu Wang Jianliang Xiao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第1期11-20,共10页
Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics, Recent advancements in materials science, mechanics, and stretchable electronics have led ... Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics, Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates. 展开更多
关键词 Mechanics bioinspired imaging system Eyeball camera Compound eye camera Stretchable electronics
下载PDF
Sensitivity Analysis of a Bioinspired Refractive Index Based Gas Sensor
17
作者 Yang Gao Qi Xia +1 位作者 Guanglan Liao Tielin Shi 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第3期323-334,共12页
It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In t... It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor. 展开更多
关键词 bioinspired gas sensor sensitivity diffraction gratings refractive index subwavelength structures
下载PDF
Daytime Radiative Cooling:Artificial and Bioinspired Strategies
18
作者 李亚楠 Shuo-ran CHEN 王钻开 《表面技术》 EI CAS CSCD 北大核心 2021年第10期1-15,共15页
Traditional cooling systems have been posing a significant challenge to the global energy crisis and climate change due to the high energy consumption of the cooling process.In recent years,the emerging daytime radiat... Traditional cooling systems have been posing a significant challenge to the global energy crisis and climate change due to the high energy consumption of the cooling process.In recent years,the emerging daytime radiative cooling provides a promising solution to address the bottleneck of traditional cooling technology by passively dissipating heat radiation to outer space without any energy consumption through the atmospheric transparency window(8~13μm).Whereas its stringent optical criteria require sophisticated and high cost fabrication producers,which hinders the applicability of radiative cooling technology.Many efforts have been devoted to develop high-efficiency and low-cost daytime radiative cooling technologies for practical application,including the nanophotonics based artificial strategy and bioinspired strategy.In order to systematically summarize the development and latest advance of daytime radiative cooling to help developing the most promising approach,here in this paper we will review and compare the two typical strategies on exploring the prospect approach for applicable radiative cooling technology.We will firstly sketch the fundamental of radiative cooling and summarize the common methods for construction radiative cooling devices.Then we will put an emphasis on the summarization and comparison of the two strategies for designing the radiative cooling device,and outlook the prospect and extending application of the daytime radiative cooling technology. 展开更多
关键词 bioinspired material radiative cooling thermal radiation NANOPHOTONICS thermal photonics
下载PDF
Bioinspired nanomaterials for the treatment of bacterial infections 被引量:2
19
作者 Xiaojing Ma Wenjing Tang Rong Yang 《Nano Research》 SCIE EI CSCD 2024年第2期691-714,共24页
Infectious diseases pose a serious threat to global health.Although immunizations can control most viral infections,bacterial infections,particularly those caused by drug-resistant strains,continue to cause high rates... Infectious diseases pose a serious threat to global health.Although immunizations can control most viral infections,bacterial infections,particularly those caused by drug-resistant strains,continue to cause high rates of illness and death.Unfortunately,the creation of new antibiotics has come to a grinding halt in the last ten years.In response to this crisis,nanotechnology has emerged as a hopeful solution to tackle drug resistance and enhance treatment results.A large variety of biomimetic nanomaterials,termed nanozymes,have demonstrated strong antimicrobial efficacy.While the inherent toxicity of nanomaterials is a concern,recent studies have harnessed the stimuli-responsiveness of nanomaterials to enable local and/or targeted delivery to reduce the treatment side effects.Indeed,the physicochemical versatility of nanomaterials affords many degrees of freedom that enable rational design of smart or autonomous therapeutics,which cannot be achieved using conventional antibiotics.The design straddles the fields of catalysis,nanoscience,microbiology,and translational medicine.To provide an overview of this interdisciplinary landscape,this review is organized based on composition into lipid,metal,metal oxide,and non-metallic nanomaterials.Liposomes as a delivery vehicle enhance bioavailability and reduce toxicity.Metal-and metal oxide-based nanomaterials inhibit bacterial growth by mimicking natural enzymatic activities such as peroxidase(POD)and oxidase.Furthermore,carbon-,polymer-,and cell membrane-based nanomaterials are combined into a discussion on non-metallic materials.At the end of this review,potentially fruitful directions for future bioinspired nanomaterials in infectious disease treatment are included. 展开更多
关键词 bioinspired nanomaterial BACTERIA infectious disease ANTIMICROBIAL LIPOSOME nanozyme
原文传递
Bioinspired nanomaterials for wearable sensing and human–machine interfacing 被引量:2
20
作者 Vishesh Kashyap Junyi Yin +1 位作者 Xiao Xiao Jun Chen 《Nano Research》 SCIE EI CSCD 2024年第2期445-461,共17页
The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties li... The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties like self-healing,self-cleaning,and adaptability.Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials,particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement.This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs,with a specific focus on state-of-the-art bioinspired capacitive sensors,piezoresistive sensors,piezoelectric sensors,triboelectric sensors,magnetoelastic sensors,and electrochemical sensors.We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry. 展开更多
关键词 bioinspired nanomaterials human–machine interface wearable sensors wearable bioelectronics
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部