期刊文献+
共找到202篇文章
< 1 2 11 >
每页显示 20 50 100
A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions
1
作者 Shahriar Md Arman Tao Yang +3 位作者 Shahadat Shahed Alanoud AlMazroa Afraa Attiah Linda Mohaisen 《Computers, Materials & Continua》 SCIE EI 2024年第2期2087-2110,共24页
The rapid growth of smart technologies and services has intensified the challenges surrounding identity authenti-cation techniques.Biometric credentials are increasingly being used for verification due to their advant... The rapid growth of smart technologies and services has intensified the challenges surrounding identity authenti-cation techniques.Biometric credentials are increasingly being used for verification due to their advantages over traditional methods,making it crucial to safeguard the privacy of people’s biometric data in various scenarios.This paper offers an in-depth exploration for privacy-preserving techniques and potential threats to biometric systems.It proposes a noble and thorough taxonomy survey for privacy-preserving techniques,as well as a systematic framework for categorizing the field’s existing literature.We review the state-of-the-art methods and address their advantages and limitations in the context of various biometric modalities,such as face,fingerprint,and eye detection.The survey encompasses various categories of privacy-preserving mechanisms and examines the trade-offs between security,privacy,and recognition performance,as well as the issues and future research directions.It aims to provide researchers,professionals,and decision-makers with a thorough understanding of the existing privacy-preserving solutions in biometric recognition systems and serves as the foundation of the development of more secure and privacy-preserving biometric technologies. 展开更多
关键词 biometric modalities biometric recognition biometric security PRIVACY-PRESERVING security threats
下载PDF
DeepBio:A Deep CNN and Bi-LSTM Learning for Person Identification Using Ear Biometrics 被引量:1
2
作者 Anshul Mahajan Sunil K.Singla 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1623-1649,共27页
The identification of individuals through ear images is a prominent area of study in the biometric sector.Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing,prompting the... The identification of individuals through ear images is a prominent area of study in the biometric sector.Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing,prompting the exploration of supplementary biometric measures such as ear biometrics.The research proposes a Deep Learning(DL)framework,termed DeepBio,using ear biometrics for human identification.It employs two DL models and five datasets,including IIT Delhi(IITD-I and IITD-II),annotated web images(AWI),mathematical analysis of images(AMI),and EARVN1.Data augmentation techniques such as flipping,translation,and Gaussian noise are applied to enhance model performance and mitigate overfitting.Feature extraction and human identification are conducted using a hybrid approach combining Convolutional Neural Networks(CNN)and Bidirectional Long Short-Term Memory(Bi-LSTM).The DeepBio framework achieves high recognition rates of 97.97%,99.37%,98.57%,94.5%,and 96.87%on the respective datasets.Comparative analysis with existing techniques demonstrates improvements of 0.41%,0.47%,12%,and 9.75%on IITD-II,AMI,AWE,and EARVN1 datasets,respectively. 展开更多
关键词 Data augmentation convolutional neural network bidirectional long short-term memory deep learning ear biometrics
下载PDF
Human Gait Recognition for Biometrics Application Based on Deep Learning Fusion Assisted Framework
3
作者 Ch Avais Hanif Muhammad Ali Mughal +3 位作者 Muhammad Attique Khan Nouf Abdullah Almujally Taerang Kim Jae-Hyuk Cha 《Computers, Materials & Continua》 SCIE EI 2024年第1期357-374,共18页
The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in c... The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work. 展开更多
关键词 Gait recognition covariant factors biometric deep learning FUSION feature selection
下载PDF
Ocular biometric characteristics of Han ethnicity in Tianjin and Uyghur ethnicity in Xinjiang undergoing cataract surgery
4
作者 Zhao Xu Li-Ming Wang +7 位作者 Qiang Feng Dan-Dan Zhang Ayiguzaili Tuerdimaimaiti Ru-Ru Guo Jing Sun Li-Jie Dong Rui-Hua Wei Ai-Hua Liu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期1058-1065,共8页
AIM:To analyze and compare the differences among ocular biometric parameters in Han and Uyghur populations undergoing cataract surgery.METHODS:In this hospital-based prospective study,410 patients undergoing cataract ... AIM:To analyze and compare the differences among ocular biometric parameters in Han and Uyghur populations undergoing cataract surgery.METHODS:In this hospital-based prospective study,410 patients undergoing cataract surgery(226 Han patients in Tianjin and 184 Uyghur patients in Xinjiang)were enrolled.The differences in axial length(AL),anterior chamber depth(ACD),keratometry[steep K(Ks)and flat K(Kf)],and corneal astigmatism(CA)measured using IOL Master 700 were compared between Han and Uyghur patients.RESULTS:The average age of Han patients was higher than that of Uyghur patients(70.22±8.54 vs 63.04±9.56y,P<0.001).After adjusting for age factors,Han patients had longer AL(23.51±1.05 vs 22.86±0.92 mm,P<0.001),deeper ACD(3.06±0.44 vs 2.97±0.37 mm,P=0.001),greater Kf(43.95±1.40 vs 43.42±1.69 D,P=0.001),steeper Ks(45.00±1.47 vs 44.26±1.71 D,P=0.001),and higher CA(1.04±0.68 vs 0.79±0.65,P=0.025)than Uyghur patients.Intra-ethnic male patients had longer AL,deeper ACD,and lower keratometry than female patients;however,CA between the sexes was almost similar.In the correlation analysis,we observed a positive correlation between AL and ACD in patients of both ethnicities(rHan=0.48,rUyghur=0.44,P<0.001),while AL was negatively correlated with Kf(rHan=-0.42,rUyghur=-0.64,P<0.001)and Ks(rHan=-0.38,rUyghur=-0.66,P<0.001).Additionally,Kf was positively correlated with Ks(rHan=0.89,rUyghur=0.93,P<0.001).CONCLUSION:There are differences in ocular biometric parameters between individuals of Han ethnicity in Tianjin and those of Uyghur ethnicity in Xinjiang undergoing cataract surgery.These ethnic variances can enhance our understanding of ocular diseases related to these parameters and provide guidance for surgical procedures. 展开更多
关键词 ocular biometric parameters IOL Master 700 ethnic difference
下载PDF
Feature extraction and learning approaches for cancellable biometrics:A survey
5
作者 Wencheng Yang Song Wang +2 位作者 Jiankun Hu Xiaohui Tao Yan Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期4-25,共22页
Biometric recognition is a widely used technology for user authentication.In the application of this technology,biometric security and recognition accuracy are two important issues that should be considered.In terms o... Biometric recognition is a widely used technology for user authentication.In the application of this technology,biometric security and recognition accuracy are two important issues that should be considered.In terms of biometric security,cancellable biometrics is an effective technique for protecting biometric data.Regarding recognition accuracy,feature representation plays a significant role in the performance and reliability of cancellable biometric systems.How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community,especially from researchers of cancellable biometrics.Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance,while the privacy of biometric data is protected.This survey informs the progress,trend and challenges of feature extraction and learning for cancellable biometrics,thus shedding light on the latest developments and future research of this area. 展开更多
关键词 biometricS feature extraction
下载PDF
Emotion Measurement Using Biometric Signal
6
作者 Yukina Miyagi Saori Gocho +4 位作者 Yuka Miyachi Chika Nakayama Shoshiro Okada Kenta Maruyama Taeyuki Oshima 《Health》 2024年第5期395-404,共10页
In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square success... In recent years, research on the estimation of human emotions has been active, and its application is expected in various fields. Biological reactions, such as electroencephalography (EEG) and root mean square successive difference (RMSSD), are indicators that are less influenced by individual arbitrariness. The present study used EEG and RMSSD signals to assess the emotions aroused by emotion-stimulating images in order to investigate whether various emotions are associated with characteristic biometric signal fluctuations. The participants underwent EEG and RMSSD while viewing emotionally stimulating images and answering the questionnaires. The emotions aroused by emotionally stimulating images were assessed by measuring the EEG signals and RMSSD values to determine whether different emotions are associated with characteristic biometric signal variations. Real-time emotion analysis software was used to identify the evoked emotions by describing them in the Circumplex Model of Affect based on the EEG signals and RMSSD values. Emotions other than happiness did not follow the Circumplex Model of Affect in this study. However, ventral attentional activity may have increased the RMSSD value for disgust as the β/θ value increased in right-sided brain waves. Therefore, the right-sided brain wave results are necessary when measuring disgust. Happiness can be assessed easily using the Circumplex Model of Affect for positive scene analysis. Improving the current analysis methods may facilitate the investigation of face-to-face communication in the future using biometric signals. 展开更多
关键词 biometric Signals ELECTROENCEPHALOGRAM ELECTROCARDIOGRAM EMOTION Communication
下载PDF
A Novel Fusion System Based on Iris and Ear Biometrics for E-exams
7
作者 S.A.Shaban Hosnia M.M.Ahmed D.L.Elsheweikh 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3295-3315,共21页
With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear an... With the rapid spread of the coronavirus epidemic all over the world,educational and other institutions are heading towards digitization.In the era of digitization,identifying educational e-platform users using ear and iris based multi-modal biometric systems constitutes an urgent and interesting research topic to pre-serve enterprise security,particularly with wearing a face mask as a precaution against the new coronavirus epidemic.This study proposes a multimodal system based on ear and iris biometrics at the feature fusion level to identify students in electronic examinations(E-exams)during the COVID-19 pandemic.The proposed system comprises four steps.Thefirst step is image preprocessing,which includes enhancing,segmenting,and extracting the regions of interest.The second step is feature extraction,where the Haralick texture and shape methods are used to extract the features of ear images,whereas Tamura texture and color histogram methods are used to extract the features of iris images.The third step is feature fusion,where the extracted features of the ear and iris images are combined into one sequential fused vector.The fourth step is the matching,which is executed using the City Block Dis-tance(CTB)for student identification.Thefindings of the study indicate that the system’s recognition accuracy is 97%,with a 2%False Acceptance Rate(FAR),a 4%False Rejection Rate(FRR),a 94%Correct Recognition Rate(CRR),and a 96%Genuine Acceptance Rate(GAR).In addition,the proposed recognition sys-tem achieved higher accuracy than other related systems. 展开更多
关键词 City block distance(CTB) Covid-19 ear biometric e-exams feature-level fusion iris biometric multimodal biometric student’s identity
下载PDF
NeuroBiometric:An Eye Blink Based Biometric Authentication System Using an Event-Based Neuromorphic Vision Sensor 被引量:4
8
作者 Guang Chen Fa Wang +3 位作者 Xiaoding Yuan Zhijun Li Zichen Liang Alois Knoll 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期206-218,共13页
The rise of the Internet and identity authentication systems has brought convenience to people's lives but has also introduced the potential risk of privacy leaks.Existing biometric authentication systems based on... The rise of the Internet and identity authentication systems has brought convenience to people's lives but has also introduced the potential risk of privacy leaks.Existing biometric authentication systems based on explicit and static features bear the risk of being attacked by mimicked data.This work proposes a highly efficient biometric authentication system based on transient eye blink signals that are precisely captured by a neuromorphic vision sensor with microsecond-level temporal resolution.The neuromorphic vision sensor only transmits the local pixel-level changes induced by the eye blinks when they occur,which leads to advantageous characteristics such as an ultra-low latency response.We first propose a set of effective biometric features describing the motion,speed,energy and frequency signal of eye blinks based on the microsecond temporal resolution of event densities.We then train the ensemble model and non-ensemble model with our Neuro Biometric dataset for biometrics authentication.The experiments show that our system is able to identify and verify the subjects with the ensemble model at an accuracy of 0.948 and with the non-ensemble model at an accuracy of 0.925.The low false positive rates(about 0.002)and the highly dynamic features are not only hard to reproduce but also avoid recording visible characteristics of a user's appearance.The proposed system sheds light on a new path towards safer authentication using neuromorphic vision sensors. 展开更多
关键词 biometricS biometric autentication event-based vision neuromorphic vision
下载PDF
Dynamic Audio-Visual Biometric Fusion for Person Recognition 被引量:1
9
作者 Najlaa Hindi Alsaedi Emad Sami Jaha 《Computers, Materials & Continua》 SCIE EI 2022年第4期1283-1311,共29页
Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,etc.Such biometric modalities are mostly used in recogni... Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,etc.Such biometric modalities are mostly used in recognition tasks separately as in unimodal systems,or jointly with two or more as in multimodal systems.However,multimodal systems can usually enhance the recognition performance over unimodal systems by integrating the biometric data of multiple modalities at different fusion levels.Despite this enhancement,in real-life applications some factors degrade multimodal systems’performance,such as occlusion,face poses,and noise in voice data.In this paper,we propose two algorithms that effectively apply dynamic fusion at feature level based on the data quality of multimodal biometrics.The proposed algorithms attempt to minimize the negative influence of confusing and low-quality features by either exclusion or weight reduction to achieve better recognition performance.The proposed dynamic fusion was achieved using face and voice biometrics,where face features were extracted using principal component analysis(PCA),and Gabor filters separately,whilst voice features were extracted using Mel-Frequency Cepstral Coefficients(MFCCs).Here,the facial data quality assessment of face images is mainly based on the existence of occlusion,whereas the assessment of voice data quality is substantially based on the calculation of signal to noise ratio(SNR)as per the existence of noise.To evaluate the performance of the proposed algorithms,several experiments were conducted using two combinations of three different databases,AR database,and the extended Yale Face Database B for face images,in addition to VOiCES database for voice data.The obtained results show that both proposed dynamic fusion algorithms attain improved performance and offer more advantages in identification and verification over not only the standard unimodal algorithms but also the multimodal algorithms using standard fusion methods. 展开更多
关键词 biometricS dynamic fusion feature fusion identification multimodal biometrics occluded face recognition quality-based recognition verification voice recognition
下载PDF
Real-Time Multimodal Biometric Authentication of Human Using Face Feature Analysis 被引量:1
10
作者 Rohit Srivastava Ravi Tomar +3 位作者 Ashutosh Sharma Gaurav Dhiman Naveen Chilamkurti Byung-Gyu Kim 《Computers, Materials & Continua》 SCIE EI 2021年第10期1-19,共19页
As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their characte... As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images. 展开更多
关键词 biometricS real-time multimodal biometrics real-time face recognition feature analysis
下载PDF
Biometrics:Standing Throughout Emerging Technologies 被引量:1
11
作者 ABDULMONAM Omar Alaswad 《Computer Aided Drafting,Design and Manufacturing》 2008年第2期82-90,共9页
Biometrics technologies have been around for quite some time and many have been deployed for different applications all around the world, ranging from small companies' time and attendance systems to access control... Biometrics technologies have been around for quite some time and many have been deployed for different applications all around the world, ranging from small companies' time and attendance systems to access control systems for nuclear facilities. Biometrics offer a reliable solution for the establishment of the distinctiveness of identity based on 'who an individual is', rather than what he or she knows or carries. Biometric Systems automatically verify a person's identity based on his/her anatomical and behavioral characteristics. Biometric traits represent a strong and undeviating link between a person and his/her identity, these traits cannot be easily lost or forgotten or faked, since biometric systems require the user to be present at the time of authentication. Some biometric systems are more reliable than others, yet they are neither secure nor accurate, all biometrics have their strengths and weaknesses. Although some of these systems have shown reliability and solidarity, work still has to be done to improve the quality of service they provide. Presented is the available standing biometric systems showing their strengths and weaknesses and also emerging technologies which may have great benefits for security applications in the near future. 展开更多
关键词 biometricS biometric systems RECOGNITION identification VERIFICATION AUTHENTICATION
下载PDF
An Efficient GCD-Based Cancelable Biometric Algorithm for Single and Multiple Biometrics
12
作者 Naglaa F.Soliman Abeer D.Algarni +2 位作者 Walid El-Shafai Fathi E.Abd El-Samie Ghada M.El Banby 《Computers, Materials & Continua》 SCIE EI 2021年第11期1571-1595,共25页
Cancelable biometrics are required in most remote access applications that need an authentication stage such as the cloud and Internet of Things(IoT)networks.The objective of using cancelable biometrics is to save the... Cancelable biometrics are required in most remote access applications that need an authentication stage such as the cloud and Internet of Things(IoT)networks.The objective of using cancelable biometrics is to save the original ones from hacking attempts.A generalized algorithm to generate cancelable templates that is applicable on both single and multiple biometrics is proposed in this paper to be considered for cloud and IoT applications.The original biometric is blurred with two co-prime operators.Hence,it can be recovered as the Greatest Common Divisor(GCD)between its two blurred versions.Minimal changes if induced in the biometric image prior to processing with co-prime operators prevents the recovery of the original biometric image through a GCD operation.Hence,the ability to change cancelable templates is guaranteed,since the owner of the biometric can pre-determine and manage the minimal change induced in the biometric image.Furthermore,we test the utility of the proposed algorithm in the single-and multi-biometric scenarios.The multi-biometric scenario depends on compressing face,fingerprint,iris,and palm print images,simultaneously,to generate the cancelable templates.Evaluation metrics such as Equal Error Rate(EER)and Area and Receiver Operator Characteristic curve(AROC)are considered.Simulation results on single-and multi-biometric scenarios show high AROC values up to 99.59%,and low EER values down to 0.04%. 展开更多
关键词 CLOUD IOT cancelable biometrics GCD single-and multi-biometrics security applications
下载PDF
Fine-Grained Soft Ear Biometrics for Augmenting Human Recognition
13
作者 Ghoroub Talal Bostaji Emad Sami Jaha 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1571-1591,共21页
Human recognition technology based on biometrics has become a fundamental requirement in all aspects of life due to increased concerns about security and privacy issues.Therefore,biometric systems have emerged as a te... Human recognition technology based on biometrics has become a fundamental requirement in all aspects of life due to increased concerns about security and privacy issues.Therefore,biometric systems have emerged as a technology with the capability to identify or authenticate individuals based on their physiological and behavioral characteristics.Among different viable biometric modalities,the human ear structure can offer unique and valuable discriminative characteristics for human recognition systems.In recent years,most existing traditional ear recognition systems have been designed based on computer vision models and have achieved successful results.Nevertheless,such traditional models can be sensitive to several unconstrained environmental factors.As such,some traits may be difficult to extract automatically but can still be semantically perceived as soft biometrics.This research proposes a new group of semantic features to be used as soft ear biometrics,mainly inspired by conventional descriptive traits used naturally by humans when identifying or describing each other.Hence,the research study is focused on the fusion of the soft ear biometric traits with traditional(hard)ear biometric features to investigate their validity and efficacy in augmenting human identification performance.The proposed framework has two subsystems:first,a computer vision-based subsystem,extracting traditional(hard)ear biometric traits using principal component analysis(PCA)and local binary patterns(LBP),and second,a crowdsourcing-based subsystem,deriving semantic(soft)ear biometric traits.Several feature-level fusion experiments were conducted using the AMI database to evaluate the proposed algorithm’s performance.The obtained results for both identification and verification showed that the proposed soft ear biometric information significantly improved the recognition performance of traditional ear biometrics,reaching up to 12%for LBP and 5%for PCA descriptors;when fusing all three capacities PCA,LBP,and soft traits using k-nearest neighbors(KNN)classifier. 展开更多
关键词 Ear biometrics soft biometrics human ear recognition semantic features feature-level fusion computer vision machine learning
下载PDF
A Proposed Biometric Authentication Model to Improve Cloud Systems Security
14
作者 Hosam El-El-Sofany 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期573-589,共17页
Most user authentication mechanisms of cloud systems depend on the credentials approach in which a user submits his/her identity through a username and password.Unfortunately,this approach has many security problems b... Most user authentication mechanisms of cloud systems depend on the credentials approach in which a user submits his/her identity through a username and password.Unfortunately,this approach has many security problems because personal data can be stolen or recognized by hackers.This paper aims to present a cloud-based biometric authentication model(CBioAM)for improving and securing cloud services.The research study presents the verification and identification processes of the proposed cloud-based biometric authentication system(CBioAS),where the biometric samples of users are saved in database servers and the authentication process is implemented without loss of the users’information.The paper presents the performance evaluation of the proposed model in terms of three main characteristics including accuracy,sensitivity,and specificity.The research study introduces a novel algorithm called“Bio_Authen_as_a_Service”for implementing and evaluating the proposed model.The proposed system performs the biometric authentication process securely and preserves the privacy of user information.The experimental result was highly promising for securing cloud services using the proposed model.The experiments showed encouraging results with a performance average of 93.94%,an accuracy average of 96.15%,a sensitivity average of 87.69%,and a specificity average of 97.99%. 展开更多
关键词 Cloud computing cloud security biometrics technologies biometric authentication
下载PDF
Novel Multimodal Biometric Feature Extraction for Precise Human Identification
15
作者 J.Vasavi M.S.Abirami 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1349-1363,共15页
In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris r... In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris recognition,and so on.However,the precise identification of human features is still physically chal-lenging in humans during their lifetime resulting in a variance in their appearance or features.In response to these challenges,a novel Multimodal Biometric Feature Extraction(MBFE)model is proposed to extract the features from the noisy sen-sor data using a modified Ranking-based Deep Convolution Neural Network(RDCNN).The proposed MBFE model enables the feature extraction from differ-ent biometric images that includes iris,palm print,and lip,where the images are preprocessed initially for further processing.The extracted features are validated after optimal extraction by the RDCNN by splitting the datasets to train the fea-ture extraction model and then testing the model with different sets of input images.The simulation is performed in matlab to test the efficacy of the modal over multi-modal datasets and the simulation result shows that the proposed meth-od achieves increased accuracy,precision,recall,and F1 score than the existing deep learning feature extraction methods.The performance improvement of the MBFE Algorithm technique in terms of accuracy,precision,recall,and F1 score is attained by 0.126%,0.152%,0.184%,and 0.38%with existing Back Propaga-tion Neural Network(BPNN),Human Identification Using Wavelet Transform(HIUWT),Segmentation Methodology for Non-cooperative Recognition(SMNR),Daugman Iris Localization Algorithm(DILA)feature extraction techni-ques respectively. 展开更多
关键词 Multimodalbiometric feature extraction ranking-baseddeepconvolution neural network noisy sensor data palm prints lip biometric iris recognition
下载PDF
Comparison of ocular parameters of two biometric measurement devices in highly myopic eyes 被引量:4
16
作者 Xiao-Xiao Guo Ran You +5 位作者 Shan-Shan Li Xiu-Fen Yang Lu Zhao Fan Zhang Yan-Ling Wang Xi Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第10期1548-1554,共7页
AIM: To compare the differences and agreement of ocular biometric parameters in highly myopic eyes obtained by optical biometric measurement instruments, the OA-2000 and IOLMaster 500. METHODS: Totally, 90 patients(90... AIM: To compare the differences and agreement of ocular biometric parameters in highly myopic eyes obtained by optical biometric measurement instruments, the OA-2000 and IOLMaster 500. METHODS: Totally, 90 patients(90 eyes) were included. They were divided into high myopia group and control group. Ocular parameters, including axial length(AL), mean keratometry(Km), anterior chamber depth(ACD), and white to white(WTW), were obtained from the OA-2000 and IOLMaster 500. RESULTS: For the control group, we applied BlandAltman graphs to assess the 95% limits of agreement(LoA) for most parameters including AL, ACD, Km, and WTW(-0.24 to 0.29 mm,-0.22 to 0.45 mm,-0.39 to 0.31 D, and-0.90 to 0.86 mm, respectively). In high myopia patients, AL, ACD, Km values had wider 95% LoA(-0.34 to 0.32 mm,-0.36 to 0.34 mm,-0.57 to 0.47 D, respectively), except WTW(-0.80 to 0.68 mm). Differences were not statistically significant between these two instruments(P>0.05). CONCLUSION: Most parameters obtained by the OA-2000 and IOLMaster 500 are comparable, including the AL, ACD, and K values. Among them, the agreement of the high myopia patients is poor compared to the patients without high myopia. 展开更多
关键词 high MYOPIA optical biometric MEASUREMENT AGREEMENT difference
下载PDF
Iris recognition:a biometric method after refractive surgery 被引量:3
17
作者 YUAN Xiao-yan ZHOU Hao SHI Peng-fei 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第8期1227-1231,共5页
Iris recognition,as a biometric method,outperforms others because of its high accuracy. Iris is the visible internal organ of human,so it is stable and very difficult to be altered. But if an eye surgery must be made ... Iris recognition,as a biometric method,outperforms others because of its high accuracy. Iris is the visible internal organ of human,so it is stable and very difficult to be altered. But if an eye surgery must be made to some individuals,it may be rejected by iris recognition system as imposters after the surgery,because the iris pattern was altered or damaged somewhat during surgery and cannot match the iris template stored before the surgery. In this paper,we originally discuss whether refractive surgery for vision correction(LASIK surgery) would influence the performance of iris recognition. And experiments are designed and tested on iris images captured especially for this research from patients before and after refractive surgery. Experiments showed that refractive surgery has little influence on iris recognition. 展开更多
关键词 biometric Iris recognition Refractive surgery LASIK MYOPIA
下载PDF
Artificial Intelligence-Based Semantic Segmentation of Ocular Regions for Biometrics and Healthcare Applications 被引量:4
18
作者 Rizwan Ali Naqvi Dildar Hussain Woong-Kee Loh 《Computers, Materials & Continua》 SCIE EI 2021年第1期715-732,共18页
Multiple ocular region segmentation plays an important role in different applications such as biometrics,liveness detection,healthcare,and gaze estimation.Typically,segmentation techniques focus on a single region of ... Multiple ocular region segmentation plays an important role in different applications such as biometrics,liveness detection,healthcare,and gaze estimation.Typically,segmentation techniques focus on a single region of the eye at a time.Despite the number of obvious advantages,very limited research has focused on multiple regions of the eye.Similarly,accurate segmentation of multiple eye regions is necessary in challenging scenarios involving blur,ghost effects low resolution,off-angles,and unusual glints.Currently,the available segmentation methods cannot address these constraints.In this paper,to address the accurate segmentation of multiple eye regions in unconstrainted scenarios,a lightweight outer residual encoder-decoder network suitable for various sensor images is proposed.The proposed method can determine the true boundaries of the eye regions from inferior-quality images using the high-frequency information flow from the outer residual encoder-decoder deep convolutional neural network(called ORED-Net).Moreover,the proposed ORED-Net model does not improve the performance based on the complexity,number of parameters or network depth.The proposed network is considerably lighter than previous state-of-theart models.Comprehensive experiments were performed,and optimal performance was achieved using SBVPI and UBIRIS.v2 datasets containing images of the eye region.The simulation results obtained using the proposed OREDNet,with the mean intersection over union score(mIoU)of 89.25 and 85.12 on the challenging SBVPI and UBIRIS.v2 datasets,respectively. 展开更多
关键词 Semantic segmentation ocular regions biometric for healthcare sensors deep learning
下载PDF
Biometric feature extraction using local fractal auto-correlation 被引量:2
19
作者 陈熙 张家树 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期335-340,共6页
Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture des... Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach. 展开更多
关键词 fractal auto-correlation fractal dimension Gabor filter biometric recognition
下载PDF
Effects of diode laser photocoagulation treatment on ocular biometric parameters in premature infants with retinopathy of prematurity 被引量:2
20
作者 Damla Erginturk Acar Ugur Acar +2 位作者 Zuhal Ozen Tunay Aysegul Arman Anil Barak 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第2期277-282,共6页
AIM:To investigate the effects of diode laser treatment on ocular biometric parameters in premature infants with retinopathy of prematurity(ROP).METHODS:Premature infants who received diode laser treatment for ROP(n=6... AIM:To investigate the effects of diode laser treatment on ocular biometric parameters in premature infants with retinopathy of prematurity(ROP).METHODS:Premature infants who received diode laser treatment for ROP(n=68)and premature infants with spontaneous regressed ROP without treatment(n=50)were performed longitudinal ocular biometric measurements including anterior chamber depth,lens thickness and axial length as follows:1 d prior to laser treatment,and 3,6,9,and 12 mo after the laser treatment.RESULTS:The mean birth weight,gestational age and initial examination time values were 936.53±302.07 g,26.66±2.42 wk,36.26±2.73 wk in the treatment group and 959.78±260.08 g,27.28±2.10 wk,36.56±2.54 wk in the control group.There was no statistically significant difference in these demographic characteristics of the groups.Anterior chamber depth,lens thickness and axial length demonstrated statistically significant linear increases during the study period in the two groups(P<0.001 for each).There were no statistically significant differences between the two groups in terms of anterior chamber depth after laser treatment.Measurements of the lens thickness at 9 th and 12 th months(9 th month 3.70±0.22 vs 3.60±0.21 mm,P=0.017;12 th month 3.81±0.21 vs 3.69±0.22 mm,P=0.002)and the axial length at 12 th month(19.35±0.79 vs 19.13±0.54 mm,P=0.031)after laser treatment were statistically higher in the treatment group.CONCLUSION:Diode laser retinal photocoagulation treatment in premature infants seems to increase the lens thickness and axial length. 展开更多
关键词 diode laser photocoagulation laser treatment ocular biometric parameters retinopathy of prematurity
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部