Blue-grained wheat derived from the hybrid Triticum aestivum L. X Thinopyrum ponticum (Podp.) Barkworth et D. R. Dewey (Agropyron elongatum (Host) P. Beauv., 2n=70). The molecular biological mechanism of the biosynthe...Blue-grained wheat derived from the hybrid Triticum aestivum L. X Thinopyrum ponticum (Podp.) Barkworth et D. R. Dewey (Agropyron elongatum (Host) P. Beauv., 2n=70). The molecular biological mechanism of the biosynthetic pathway of blue pigments in the blue grain remains unclear yet. Dihydroflavonol 4-reductase (DFR) is one of the key enzymes controlling flavonoid synthesis in anthocyanin biosynthetic pathway, and may directly participate in the formation of blue pigment in the aleurone layer of blue-grained wheat. Here we cloned a DFR cDNA (TaDFR) from the developing seeds of blue-grained wheat, and four DFR genomic DNAs from Th. ponticum (ThpDFR.t), blue-grained wheat (TaDFR.bg), white-grained offspring of light blue-grained wheat (TaDFR.wg) and Chinese Spring (2n=42) (TaDFR.csg), respectively. TaDFR cDNA encodes a 354 amino-acids polypeptide with high identity to DFR from Hordeum vulgare L. (94%), Oryza sativa L. (83%), Zea mays L.(84%). The result of cluster analysis showed that TaDFR cDNA nucleotide sequence has 100% identity with that of TaDFR.csg. The four DFR genomic DNAs have extraordinary high homology and each has three introns. The differences of the four DFR genomic DNAs mainly exist in introns. Southern blotting analysis showed that there are at least 3-5 DFR copies in wheat, the copy numbers in different color grain wheats are not significantly different. The hybridization band patterns were the same, but different from that of Th. ponticum. DFR in blue-grained wheat belongs to a DFR superfamily. Northern blotting analysis indicated that the DFR expressed in the developing seeds of both blue- and white-grained wheat at 15 d after flowering (DAF), the mRNA levels of DFR reached the highest at 18 DAF, then declined quickly and disappeared at 33 DAF But the expression levels in blue-grained seeds were higher than that in white grain at the same seed developing stages. DFR transcripts accumulated in young leaves, and leaf sheaths of blue- and white-grained wheat and Th ponticum, but not detected in roots from different color wheats and developing seeds of Th. ponticum. Results indicated that there may exist some regulatory gene(s) which can increase the expression of DFR in the aleurone layer of blue-grained wheat, and thus resulting in the formation of blue pigments.展开更多
Pollination of flowers initiates postpollination development in orchid (Doritaenopsis hybrida Hort.) flowers, including perianth senescence, stigma closure, and ovary development. Because ethylene is thought to play ...Pollination of flowers initiates postpollination development in orchid (Doritaenopsis hybrida Hort.) flowers, including perianth senescence, stigma closure, and ovary development. Because ethylene is thought to play a key role in coordinating these developmental changes, the authors studied the temporal and spatial patterns of expression of genes encoding 1 aminocyclopropane 1 carboxylic acid (ACC) synthase and ACC oxidase following pollination associated factor treatments in orchid flowers. Both ACC synthase and ACC oxidase mRNA accumulation in the various parts of the flowers is induced by auxin, and ethylene, but not by emasculation. The patterns of both ACC synthase and ACC oxidase mRNA accumulation are similar in all floral organs following auxin and ethylene treatments. Further, in situ hybridization analysis indicates that the ACC oxidase mRNA is localized in epidermal and parenchyma cells of the stigma after auxin and ethylene treatments. The putative roles of auxin, ethylene and emasculation are discussed in terms of the regulation of ACC synthase and ACC oxidase gene expression in flowers.展开更多
Anthocyanins confer the wide range of colors for plants and also play beneficial health roles as potentially protective factors against heart disease and cancer. Brassica juncea is cultivated as an edible oil resource...Anthocyanins confer the wide range of colors for plants and also play beneficial health roles as potentially protective factors against heart disease and cancer. Brassica juncea is cultivated as an edible oil resource and vegetable crop worldwide, thus elucidating the anthocyanin biosynthetic pathway would be helpful to improve the nutritional quality of Brassica juncea through the breeding and cultivating of high anthocyanin content varieties. Herein, 129 genes in B. juncea were identified as orthologs of 41 anthocyanin biosynthetic genes(ABGs) in Arabidopsis thaliana by comparative genomic analyses. The B. juncea ABGs have expanded by whole genome triplication and subsequent allopolyploidizatoin, but lost mainly during the whole genome triplication between B. rapa/B. nigra and A. thaliana, rather than the allopolyploidization process between B. juncea and B. rapa/B. nigra, leading to different copy numbers retention of A. thaliana homologous genes. Although the overall expansion levels ABGs were similar to the whole genome, more negative regulatory genes were retained in the anthocyanin biosynthesis regulatory system. Transcriptional analysis of B. juncea with different anthocyanin accumulation showed that BjDFR, BjTT19, BjTT8 are significantly up-regulated in plants with purple leaves as compared with green leaves. The overexpression of BjTT8 and these target genes which were involved in late anthocyanin biosynthesis and transport might account for increasing levels of anthocyanin accumulation in purple leaves. Our results could promote the understanding of the genetic mechanism of anthocyanin biosynthesis in B. juncea.展开更多
Physicochemical properties of endosperm starches in milled rice determine its cooking and eating quality.Amylose is synthesized by granule-bound starch synthase I(GBSSI),whilst amylopectin is synthesized by the synerg...Physicochemical properties of endosperm starches in milled rice determine its cooking and eating quality.Amylose is synthesized by granule-bound starch synthase I(GBSSI),whilst amylopectin is synthesized by the synergistic activities of starch synthases(SSs),branching enzymes(BEs)and debranching enzymes(DBEs).However,the complexes formed by starch biosynthetic enzymes are not well characterized.Gene expression profiles and protein complexes were determined in white-core(GM645)and waxy(GM077)mutants derived from a high amylose indica rice Guangluai 4(GLA4).In GM645,genes including AGPS1,GBSSI,SSIIa,BEI,BEIIa,BEIIb,PUL,ISA1 and SP were significantly downregulated during seed development.In GM077,the expression levels of AGPL2,AGPS1,AGPS2b,SSIIIa,BEI,PUL and ISA1 were significantly upregulated.Co-immunoprecipitation assays revealed interactions of SSs-BEs,SSs-PUL and BEs-PUL in developing seeds.However,weak SSI-SSIIa interaction was detected in GM077,whilst SSI-PUL interaction was absent.Weak interaction signals for SSI-SSIIa,SSIIa-BEI,SSIIa-BEIIb,BEI-BEIIb and SSI-BEI were also observed in GM645.These results suggest that the protein-protein interactions for starch biosynthesis are modified in mutants,which provides insight into the mechanisms of starch biosynthesis,particularly in indica rice.展开更多
Carotenoid biosynthetic pathway produces not only pigments that protect photosynthetic system against photo-oxidative damage, but also precursors of abscisic acid, the major hormone regulates stress responses. To unde...Carotenoid biosynthetic pathway produces not only pigments that protect photosynthetic system against photo-oxidative damage, but also precursors of abscisic acid, the major hormone regulates stress responses. To understand the response of carotenoid biosynthetic pathway to salt stress, the expression of the genes involved in carotenoid and ABA biosynthesis were compared in cultivated tomato Solanum lycopersicon cv. Moneymaker and its relative wild genotype S. pimpinellifolium (PI365967) together with the contents of carotenoids and ABA. The results showed that 11 of the 15 genes investigated were up-regulated and four unaltered in Moneymaker after 5 h of salt stress; whereas only four genes were up-regulated, four unaltered, and seven down-regulated in PI365967 after stress. Further comparison revealed that 11 salinity-induced genes were expressed significantly lower in Moneymaker than in PI365967 under normal condition, and 8 of them were induced to similar levels after salt stress. In consistence, ABA level was doubled in Moneymaker but kept consistent in PI365967 after salt stress, though the contents of neoxanthin, violaxanthin, [3-carotene, lutein, and total carotenoids were kept unchanged in both species. Since it is known that PI365967 is more tolerant to salt stress than Moneymaker, we proposed that the constitutive high level of carotenoid and ABA biosynthetic pathway under normal growth condition could be benefit to PI365967 for establishing the early response to salt stress. In addition, CrtR-bl and CrtR-b2 that encode [3-carotenoid hydroxylases were the only genes in carotenoid biosynthetic pathway that were up-regulated by salt stress in both species. The CrtR-b2 gene was cloned from both species and no essential difference was found in the encoded amino acid sequences. Transformation of CrtR-b2 to tobacco improved the seed germination under salt stress condition, indicating that the hydrolysis of β-carotenoid is the target of transcriptional regulation of the carotenoid biosynthesis in both tomato cultivar and wild relative.展开更多
AIM: To identify the gene (s) related to the antagonistic activity of Enterobacter cloacae B8 and to elucidate its antagonistic mechanism. METHODS: Transposon-mediated mutagenesis and tagging method and cassette P...AIM: To identify the gene (s) related to the antagonistic activity of Enterobacter cloacae B8 and to elucidate its antagonistic mechanism. METHODS: Transposon-mediated mutagenesis and tagging method and cassette PCR-based chromosomal walking method were adopted to isolate the mutant strain (s) of B8 that lost the antagonistic activity and to clone DNA fragments around Tn5 insertion site. Sequence compiling and open reading frame (ORF) finding were done with DNAStar program and homologous sequence and conserved domain searches were performed with BlastN or BlastP programs at www.ncbi.nlm.nih.gov. To verify the gene involved in the antagonistic activity, complementation of a full-length clone of the anrFgene to the mutant B8F strain was used. RESULTS: A 3 321 bp contig around the Tn5 insertion site was obtained and an ORF of 2 634 bp in length designated as anrFgene encoding for a 877 aa polyketide synthase-like protein was identified. It had a homology of 83% at the nucleotide level and 79% ID/87% SIM at the protein level, to the admM gene of Pantoea agglomerans andrimid biosynthetic gene cluster (AY192157). The Tn5 was inserted at 2 420 bp of the gene corresponding to the COG3319 (the thioesterase domain of type I polyketide synthase) coding region on BSF. The antagonistic activity against Xanthomonas oryzae pv. oryzae was resumed with complementation of the full-length anrFgene to the mutant B8F. CONCLUSION: The anrFgene obtained is related to the antagonistic activity of BS, and the antagonistic substances produced by B8 are andrimid and/or its analogs.展开更多
The reactive oxygen species (ROS) originated from endogenous and exogenous sources play a dominant role in the initiation and propagation of several diseases. It is therefore an urgent need to explore substances capab...The reactive oxygen species (ROS) originated from endogenous and exogenous sources play a dominant role in the initiation and propagation of several diseases. It is therefore an urgent need to explore substances capable of encountering the ROS and resist the damage caused by ROS. The present paper deals with various aspects of generation and implications of ROS in the management of myocardial infarction. The use of biosynthetic amphiphilic biodegradable hydrogels in the control and management of ROS in myocardial infarction was studied using a biosynthetic hydrogel (PA-PEGDA) comprising poly(propylene fumarate)-co-alginate copolymer cross-linked with calcium and polyethylene glycol diacrylate (PEGDA). The effect of ROS on the cell growth was studied using H2O2 as model ROS molecule. The present hydrogel resists the penetration of ROS in the cell which was evident from the live/dead assay, increased intra cellular GSH levels when compared with the H2O2 treated positive and curcumin treated negative control cells. The Comet assay reveals genomic integrity of the cells exposed to the present hydrogel. The hydrogel is a promising injectable material for the management of myocardial infarction and ischemia.展开更多
Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum(P. falciparum) malaria although drug resistance has already emerged and spread i...Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum(P. falciparum) malaria although drug resistance has already emerged and spread in Southeast Asia. Thus, to fight this disease, there is an urgent need to develop new antimalarial drugs for malaria chemotherapy. Unlike human host cells, P. falciparum cannot salvage preformed pyrimidine bases or nucleosides from the extracellular environment and relies solely on nucleotides synthesized through the de novo biosynthetic pathway. This review presents significant progress on understanding the de novo pyrimidine pathway and the functional enzymes in the human parasite P. falciparum. Current knowledge in genomics and metabolomics are described, particularly focusing on the parasite purine and pyrimidine nucleotide metabolism. These include gene annotation, characterization and molecular mechanism of the enzymes that are different from the human host pathway. Recent elucidation of the three-dimensional crystal structures and the catalytic reactions of three enzymes: dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their inhibitors are reviewed in the context of their therapeutic potential against malaria.展开更多
The gene cluster for the biosynthetic of a nonribosomal peptide, cyanopeptolins and micropeptin (MCN), was identified in Microcystis strains and halogenated MCN-producing Microcystis were found to possess the halogena...The gene cluster for the biosynthetic of a nonribosomal peptide, cyanopeptolins and micropeptin (MCN), was identified in Microcystis strains and halogenated MCN-producing Microcystis were found to possess the halogenase gene, mcnD, between nonribosomal peptide synthetase genes, mcnC and mcnE. A comparative sequence analysis of the mcn gene cluster between halogenated and non-halogenated MCN-producing strains revealed mosaic sequence traces from mcnD in the non-coding region between mcnC and mcnE in the latter strains. A phylogenetic analysis based on a 170-bp non-coding region including the mcnD traces suggests that the recombination events occurred in a particular region of the Microcystis’ mcn gene. This study provides novel insight into the ecological patterning of widespread Microcystis species.展开更多
Quality marker(Q-marker)of Chinese materia medica(CMM)plays an important role in quality control of CMM products.However,its research strategy and technique remain unclear.Based on the fact that quality standard of CM...Quality marker(Q-marker)of Chinese materia medica(CMM)plays an important role in quality control of CMM products.However,its research strategy and technique remain unclear.Based on the fact that quality standard of CMM should be associated with clinical efficacy,taking Jinqi Jiangtang tablet treating type 2 diabetes as an example,the Q-marker related to activity via the reverse analysis of drug metabolism in clinic and traceability of botanic biosynthetic pathways is discovered and validated.Therefore,we proposed a new research strategy of Q-marker of CMM with"Discovery of clinical active constituents as guidance,Reverse analysis of metabolic transformations as link,and Traceability of biosynthesis pathways as key",to improve quality control of CMM products.展开更多
Mollemycin A(MOMA)is a unique glyco-hexadepsipeptide-polyketide that was isolated from a Streptomyces sp.derived from the Australian marine environment.MOMA exhibits remarkable inhibitory activity against both drug-se...Mollemycin A(MOMA)is a unique glyco-hexadepsipeptide-polyketide that was isolated from a Streptomyces sp.derived from the Australian marine environment.MOMA exhibits remarkable inhibitory activity against both drug-sensitive and multidrug-resistant malaria parasites.Optimizing MOMA through structural modifications or product enhancements is necessary for the development of effective analogues.However,modifying MOMA using chemical approaches is challenging,and the production titer of MOMA in the wild-type strain is low.This study identified and characterized the biosynthetic gene cluster of MOMA for the first time,proposed its complex biosynthetic pathway,and achieved an effective two-pronged enhancement of MOMA production.The fermentation medium was optimized to increase the yield of MOMA from 0.9 mg L^(-1)to 1.3 mg L^(-1),a 44%boost.Additionally,a synergistic mutant strain was developed by deleting the momB3 gene and overexpressing momB2,resulting in a 2.6-fold increase from 1.3 mg L^(-1)to 3.4 mg L^(-1).These findings pave the way for investigating the biosynthetic mechanism of MOMA,creating opportunities to produce a wide range of MOMA analogues,and developing an efficient strain for the sustainable and economical production of MOMA and its analogues.展开更多
Mescaline,among the earliest identified natural hallucinogens,holds great potential in psychotherapy treatment.Nonetheless,despite the existence of a postulated biosynthetic pathway for more than half a century,the sp...Mescaline,among the earliest identified natural hallucinogens,holds great potential in psychotherapy treatment.Nonetheless,despite the existence of a postulated biosynthetic pathway for more than half a century,the specific enzymes involved in this process are yet to be identified.In this study,we investigated the cactus Lophophora williamsii(Peyote),the largest known natural producer of the phenethylamine mescaline.We employed a multi-faceted approach,combining de novo whole-genome and transcriptome sequencing with comprehensive chemical profiling,enzymatic assays,molecular modeling,and pathway engineering for pathway elucidation.We identified four groups of enzymes responsible for the six catalytic steps in the mescaline biosynthetic pathway,and an N-methyltransferase enzyme that N-methylates all phenethylamine intermediates,likely modulating mescaline levels in Peyote.Finally,we reconstructed the mescaline biosynthetic pathway in both Nicotiana benthamiana plants and yeast cells,providing novel insights into several challenges hindering complete heterologous mescaline production.Taken together,our study opens up avenues for exploration of sustainable production approaches and responsible utilization of mescaline,safeguarding this valuable natural resource for future generations.展开更多
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from‘omics’approaches.Here,we cha...Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from‘omics’approaches.Here,we characterized metagenome-assembled-genomes(MAGs)from the surface sediment microbes of the Venice Lagoon(northern Adriatic Sea)in distinct sub-basins exposed to various natural and anthropogenic pressures.MAGs were explored for biodiversity,major marine metabolic processes,anthropogenic activity-related functions,adaptations at the microscale,and biosynthetic gene clusters.Starting from 126 MAGs,a non-redundant dataset of 58 was compiled,the majority of which(35)belonged to(Alpha-and Gamma-)Proteobacteria.Within the broad microbial metabolic repertoire(including C,N,and S metabolisms)the potential to live without oxygen emerged as one of the most important features.Mixotrophy was also found as a successful lifestyle.Cluster analysis showed that different MAGs encoded the same metabolic patterns(e.g.,C fixation,sulfate oxidation)thus suggesting metabolic redundancy.Antibiotic and toxic compounds resistance genes were coupled,a condition that could promote the spreading of these genetic traits.MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification.Our results highlighted that bacteria living in an impacted environment,such as the surface sediments of the Venice Lagoon,may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites,promoting ecosystem resilience and stability toward environmental pressures.展开更多
Danshen,the dried roots and rhizomes of Salvia miltiorrhiza Bunge(S.miltiorrhiza),is widely used in the treatment of cardiovascular and cerebrovascular diseases.Tanshinones,the bioactive compounds from Danshen,exhibit...Danshen,the dried roots and rhizomes of Salvia miltiorrhiza Bunge(S.miltiorrhiza),is widely used in the treatment of cardiovascular and cerebrovascular diseases.Tanshinones,the bioactive compounds from Danshen,exhibit a wide spectrum of pharmacological properties,suggesting their potential for future therapeutic applications.Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized,most of which belong to the CYP76 and CYP71 families.In this study,CYP81C16,a member of the CYP71 clan,was identified in S.miltiorrhiza.An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones,namely neocryptotanshinone,deoxyneocryptotanshinone,and danshenxinkuns A and B.SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%.Kinetic evaluations and in vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates.The overexpression of SmCYP81C16 promoted the accumulation of(iso)tanshinone in hairy root lines.The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones,either through microbial or plant metabolic engineering.展开更多
Methylobacterium species,the representative bacteria distributed in phyllosphere region of plants,often synthesize carotenoids to resist harmful UV radiations.Methylobacterium extorquens is known to produce a caroteno...Methylobacterium species,the representative bacteria distributed in phyllosphere region of plants,often synthesize carotenoids to resist harmful UV radiations.Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C_(30) backbone.However,its exact structure remains unknown.In the present study,the carotenoid produced by M.extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-β-glucopyranosyl]-4,4′-diapolycopenedioc acid(1),a glycosylated C_(30) carotenoid.Furthermore,the genes related to the C_(30)carotenoid synthesis were investigated.Squalene,the precursor of the C_(30) carotenoid,is synthesized by the co-occurrence of META1p1815,META1p1816 and META1p1817.Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1.By using gene deletion and gene complementation experiments,the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4′-diapolycopene-4,4′-dioic acid to carotenoid 1.In conclusion,the structure and biosynthetic genes of carotenoid 1 produced by M.extorquens AM1 were firstly characterized in this work,which shed lights on engineering M.extorquens AM1 for producing carotenoid 1 in high yield.展开更多
De novo nucleotide biosynthetic pathway is a highly conserved and essential biochemical pathway in almost all organisms.Both purine nucleotides and pyrimidine nucleotides are necessary for cell metabolism and prolifer...De novo nucleotide biosynthetic pathway is a highly conserved and essential biochemical pathway in almost all organisms.Both purine nucleotides and pyrimidine nucleotides are necessary for cell metabolism and proliferation.Thus,the dysregulation of the de novo nucleotide biosynthetic pathway contributes to the development of many human diseases,such as cancer.It has been shown that many enzymes in this pathway are overactivated in different cancers.In this review,we summarize and update the current knowledge on the de novo nucleotide biosynthetic pathway,regulatory mechanisms,its role in tumorigenesis,and potential targeting opportunities.展开更多
A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which ...A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which generated a trace of the target products but accumulated a large amount of shunt products.Based on rational analysis of the relevant secondary metabolism,directed engineering of the biosynthetic pathways resulted in the high production of HBM B,as well as new HBM derivates with improved antitumor activity.These results not only establish a biosynthetic system to effectively synthesize HBMs-a class of the largest and most complex Type-Ⅱpolyketides,with a unique pseudo-dimeric structure-but also set the stage for further engineering and deep investigation of this complex biosynthetic pathway toward potent anticancer drugs.展开更多
Taxus,commonly known as yew,is a well-known gymnosperm with great ornamental and medicinal value.In this study,by assembling a chromosome-level genome of the Himalayan yew(Taxus wallichiana)with 10.9 Gb in 12 chromoso...Taxus,commonly known as yew,is a well-known gymnosperm with great ornamental and medicinal value.In this study,by assembling a chromosome-level genome of the Himalayan yew(Taxus wallichiana)with 10.9 Gb in 12 chromosomes,we revealed that tandem duplication acts as the driving force of gene family evolution in the yew genome,resulting in the main genes for paclitaxel biosynthesis,i.e.those encoding the taxadiene synthase,P450s,and transferases,being clustered on the same chromosome.The tandem duplication may also provide genetic resources for the nature to sculpt the core structure of taxoids at different positions and subsequently establish the complex pathway of paclitaxel by neofunctionalization.Furthermore,we confirmed that there are two genes in the cluster encoding isoenzymes of a known enzyme in the paclitaxel biosynthetic pathway.The reference genome of the Himalayan yew will serve as a platform for decoding the complete biosynthetic pathway of paclitaxel and understanding the chemodi-versity of taxoids in gymnosperms.展开更多
Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recen...Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology.展开更多
The aim of our study was to assess differences in the expression of genes involved in fruit softening and ethylene biosynthetic pathways under different temperature storage conditions. Different peach cultivars of ‘X...The aim of our study was to assess differences in the expression of genes involved in fruit softening and ethylene biosynthetic pathways under different temperature storage conditions. Different peach cultivars of ‘Xiacui' and ‘Yumyeong', which are stonyhard, ‘Yinhualu', which is softmelting, ‘Hujing Milu', which is hard-melting, and ‘Baby Gold 6', which is non-melting at 80% ripening, were collected as test materials. The results showed that only slight ethylene production was detected after harvesting of ‘Yumyeong' and ‘Xiacui' under either a room temperature(25 °C) or low temperature(4 °C). The fruit firmness of stonyhard cultivars was retained at a high level under room temperature over time, whereas a low temperature induced ‘Yumyeong' fruit to soften. Quantitative real-time PCR results indicated that the PpACS1 gene was highly expressed in soft-melting, hard-melting and non-melting cultivars; however, expression was extremely low in stonyhard peaches. PpACS2 or PpACS3, however,was not detected in all five cultivars. Interestingly, cold treatment significantly decreased firmness along with endo-PG expression obviously upregulated in ‘Yumyeong', but not in ‘Xiacui' peaches. In conclusion, this study revealed that fruit softening of peaches with different flesh textures was closely related to ethylene biosynthesis during the storage period, which was controlled via regulating relevant gene expression levels under different storage temperatures.展开更多
文摘Blue-grained wheat derived from the hybrid Triticum aestivum L. X Thinopyrum ponticum (Podp.) Barkworth et D. R. Dewey (Agropyron elongatum (Host) P. Beauv., 2n=70). The molecular biological mechanism of the biosynthetic pathway of blue pigments in the blue grain remains unclear yet. Dihydroflavonol 4-reductase (DFR) is one of the key enzymes controlling flavonoid synthesis in anthocyanin biosynthetic pathway, and may directly participate in the formation of blue pigment in the aleurone layer of blue-grained wheat. Here we cloned a DFR cDNA (TaDFR) from the developing seeds of blue-grained wheat, and four DFR genomic DNAs from Th. ponticum (ThpDFR.t), blue-grained wheat (TaDFR.bg), white-grained offspring of light blue-grained wheat (TaDFR.wg) and Chinese Spring (2n=42) (TaDFR.csg), respectively. TaDFR cDNA encodes a 354 amino-acids polypeptide with high identity to DFR from Hordeum vulgare L. (94%), Oryza sativa L. (83%), Zea mays L.(84%). The result of cluster analysis showed that TaDFR cDNA nucleotide sequence has 100% identity with that of TaDFR.csg. The four DFR genomic DNAs have extraordinary high homology and each has three introns. The differences of the four DFR genomic DNAs mainly exist in introns. Southern blotting analysis showed that there are at least 3-5 DFR copies in wheat, the copy numbers in different color grain wheats are not significantly different. The hybridization band patterns were the same, but different from that of Th. ponticum. DFR in blue-grained wheat belongs to a DFR superfamily. Northern blotting analysis indicated that the DFR expressed in the developing seeds of both blue- and white-grained wheat at 15 d after flowering (DAF), the mRNA levels of DFR reached the highest at 18 DAF, then declined quickly and disappeared at 33 DAF But the expression levels in blue-grained seeds were higher than that in white grain at the same seed developing stages. DFR transcripts accumulated in young leaves, and leaf sheaths of blue- and white-grained wheat and Th ponticum, but not detected in roots from different color wheats and developing seeds of Th. ponticum. Results indicated that there may exist some regulatory gene(s) which can increase the expression of DFR in the aleurone layer of blue-grained wheat, and thus resulting in the formation of blue pigments.
文摘Pollination of flowers initiates postpollination development in orchid (Doritaenopsis hybrida Hort.) flowers, including perianth senescence, stigma closure, and ovary development. Because ethylene is thought to play a key role in coordinating these developmental changes, the authors studied the temporal and spatial patterns of expression of genes encoding 1 aminocyclopropane 1 carboxylic acid (ACC) synthase and ACC oxidase following pollination associated factor treatments in orchid flowers. Both ACC synthase and ACC oxidase mRNA accumulation in the various parts of the flowers is induced by auxin, and ethylene, but not by emasculation. The patterns of both ACC synthase and ACC oxidase mRNA accumulation are similar in all floral organs following auxin and ethylene treatments. Further, in situ hybridization analysis indicates that the ACC oxidase mRNA is localized in epidermal and parenchyma cells of the stigma after auxin and ethylene treatments. The putative roles of auxin, ethylene and emasculation are discussed in terms of the regulation of ACC synthase and ACC oxidase gene expression in flowers.
基金funded by the National Key Research and Development Program of China(2016YFD0100202)the Natural Science Foundation of Hunan Province,China(2016JJ1010)the Scientific Research Fund of Hunan Provincial Education Department,China(18C0305,17K035,17C0652,and 17C0653)。
文摘Anthocyanins confer the wide range of colors for plants and also play beneficial health roles as potentially protective factors against heart disease and cancer. Brassica juncea is cultivated as an edible oil resource and vegetable crop worldwide, thus elucidating the anthocyanin biosynthetic pathway would be helpful to improve the nutritional quality of Brassica juncea through the breeding and cultivating of high anthocyanin content varieties. Herein, 129 genes in B. juncea were identified as orthologs of 41 anthocyanin biosynthetic genes(ABGs) in Arabidopsis thaliana by comparative genomic analyses. The B. juncea ABGs have expanded by whole genome triplication and subsequent allopolyploidizatoin, but lost mainly during the whole genome triplication between B. rapa/B. nigra and A. thaliana, rather than the allopolyploidization process between B. juncea and B. rapa/B. nigra, leading to different copy numbers retention of A. thaliana homologous genes. Although the overall expansion levels ABGs were similar to the whole genome, more negative regulatory genes were retained in the anthocyanin biosynthesis regulatory system. Transcriptional analysis of B. juncea with different anthocyanin accumulation showed that BjDFR, BjTT19, BjTT8 are significantly up-regulated in plants with purple leaves as compared with green leaves. The overexpression of BjTT8 and these target genes which were involved in late anthocyanin biosynthesis and transport might account for increasing levels of anthocyanin accumulation in purple leaves. Our results could promote the understanding of the genetic mechanism of anthocyanin biosynthesis in B. juncea.
基金National Key Research and Development Program of China(Grant No.2016YFD0400104)the Natural Science Foundation of China(Grant Nos.31800640 and 31871531).
文摘Physicochemical properties of endosperm starches in milled rice determine its cooking and eating quality.Amylose is synthesized by granule-bound starch synthase I(GBSSI),whilst amylopectin is synthesized by the synergistic activities of starch synthases(SSs),branching enzymes(BEs)and debranching enzymes(DBEs).However,the complexes formed by starch biosynthetic enzymes are not well characterized.Gene expression profiles and protein complexes were determined in white-core(GM645)and waxy(GM077)mutants derived from a high amylose indica rice Guangluai 4(GLA4).In GM645,genes including AGPS1,GBSSI,SSIIa,BEI,BEIIa,BEIIb,PUL,ISA1 and SP were significantly downregulated during seed development.In GM077,the expression levels of AGPL2,AGPS1,AGPS2b,SSIIIa,BEI,PUL and ISA1 were significantly upregulated.Co-immunoprecipitation assays revealed interactions of SSs-BEs,SSs-PUL and BEs-PUL in developing seeds.However,weak SSI-SSIIa interaction was detected in GM077,whilst SSI-PUL interaction was absent.Weak interaction signals for SSI-SSIIa,SSIIa-BEI,SSIIa-BEIIb,BEI-BEIIb and SSI-BEI were also observed in GM645.These results suggest that the protein-protein interactions for starch biosynthesis are modified in mutants,which provides insight into the mechanisms of starch biosynthesis,particularly in indica rice.
基金supported by the Knowledge Innovation Key Program of the Chinese Academy of Sciences (KSCXZ-YW-N-013)
文摘Carotenoid biosynthetic pathway produces not only pigments that protect photosynthetic system against photo-oxidative damage, but also precursors of abscisic acid, the major hormone regulates stress responses. To understand the response of carotenoid biosynthetic pathway to salt stress, the expression of the genes involved in carotenoid and ABA biosynthesis were compared in cultivated tomato Solanum lycopersicon cv. Moneymaker and its relative wild genotype S. pimpinellifolium (PI365967) together with the contents of carotenoids and ABA. The results showed that 11 of the 15 genes investigated were up-regulated and four unaltered in Moneymaker after 5 h of salt stress; whereas only four genes were up-regulated, four unaltered, and seven down-regulated in PI365967 after stress. Further comparison revealed that 11 salinity-induced genes were expressed significantly lower in Moneymaker than in PI365967 under normal condition, and 8 of them were induced to similar levels after salt stress. In consistence, ABA level was doubled in Moneymaker but kept consistent in PI365967 after salt stress, though the contents of neoxanthin, violaxanthin, [3-carotene, lutein, and total carotenoids were kept unchanged in both species. Since it is known that PI365967 is more tolerant to salt stress than Moneymaker, we proposed that the constitutive high level of carotenoid and ABA biosynthetic pathway under normal growth condition could be benefit to PI365967 for establishing the early response to salt stress. In addition, CrtR-bl and CrtR-b2 that encode [3-carotenoid hydroxylases were the only genes in carotenoid biosynthetic pathway that were up-regulated by salt stress in both species. The CrtR-b2 gene was cloned from both species and no essential difference was found in the encoded amino acid sequences. Transformation of CrtR-b2 to tobacco improved the seed germination under salt stress condition, indicating that the hydrolysis of β-carotenoid is the target of transcriptional regulation of the carotenoid biosynthesis in both tomato cultivar and wild relative.
基金Supported by the National Natural Science Foundation of China,No. 39870034the National High Technology Research and Development Program of China, the 863 Program, No. 104-04-01-01the Major Project of Science and Technology Development of Zhejiang Province, No. 021102529
文摘AIM: To identify the gene (s) related to the antagonistic activity of Enterobacter cloacae B8 and to elucidate its antagonistic mechanism. METHODS: Transposon-mediated mutagenesis and tagging method and cassette PCR-based chromosomal walking method were adopted to isolate the mutant strain (s) of B8 that lost the antagonistic activity and to clone DNA fragments around Tn5 insertion site. Sequence compiling and open reading frame (ORF) finding were done with DNAStar program and homologous sequence and conserved domain searches were performed with BlastN or BlastP programs at www.ncbi.nlm.nih.gov. To verify the gene involved in the antagonistic activity, complementation of a full-length clone of the anrFgene to the mutant B8F strain was used. RESULTS: A 3 321 bp contig around the Tn5 insertion site was obtained and an ORF of 2 634 bp in length designated as anrFgene encoding for a 877 aa polyketide synthase-like protein was identified. It had a homology of 83% at the nucleotide level and 79% ID/87% SIM at the protein level, to the admM gene of Pantoea agglomerans andrimid biosynthetic gene cluster (AY192157). The Tn5 was inserted at 2 420 bp of the gene corresponding to the COG3319 (the thioesterase domain of type I polyketide synthase) coding region on BSF. The antagonistic activity against Xanthomonas oryzae pv. oryzae was resumed with complementation of the full-length anrFgene to the mutant B8F. CONCLUSION: The anrFgene obtained is related to the antagonistic activity of BS, and the antagonistic substances produced by B8 are andrimid and/or its analogs.
文摘The reactive oxygen species (ROS) originated from endogenous and exogenous sources play a dominant role in the initiation and propagation of several diseases. It is therefore an urgent need to explore substances capable of encountering the ROS and resist the damage caused by ROS. The present paper deals with various aspects of generation and implications of ROS in the management of myocardial infarction. The use of biosynthetic amphiphilic biodegradable hydrogels in the control and management of ROS in myocardial infarction was studied using a biosynthetic hydrogel (PA-PEGDA) comprising poly(propylene fumarate)-co-alginate copolymer cross-linked with calcium and polyethylene glycol diacrylate (PEGDA). The effect of ROS on the cell growth was studied using H2O2 as model ROS molecule. The present hydrogel resists the penetration of ROS in the cell which was evident from the live/dead assay, increased intra cellular GSH levels when compared with the H2O2 treated positive and curcumin treated negative control cells. The Comet assay reveals genomic integrity of the cells exposed to the present hydrogel. The hydrogel is a promising injectable material for the management of myocardial infarction and ischemia.
基金supported by the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (CHEMAL, TDR/WHO)the National Science and Technology Development Agency of Thailand (NSTDA Career Development Award)+2 种基金the Thailand Research Fund (TRF Basic Research)the Office of Higher Education Commission (OHEC University Staff Development Consortium)Graduate School and Faculty of Medicine, Chulalongkorn University, Thailand
文摘Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum(P. falciparum) malaria although drug resistance has already emerged and spread in Southeast Asia. Thus, to fight this disease, there is an urgent need to develop new antimalarial drugs for malaria chemotherapy. Unlike human host cells, P. falciparum cannot salvage preformed pyrimidine bases or nucleosides from the extracellular environment and relies solely on nucleotides synthesized through the de novo biosynthetic pathway. This review presents significant progress on understanding the de novo pyrimidine pathway and the functional enzymes in the human parasite P. falciparum. Current knowledge in genomics and metabolomics are described, particularly focusing on the parasite purine and pyrimidine nucleotide metabolism. These include gene annotation, characterization and molecular mechanism of the enzymes that are different from the human host pathway. Recent elucidation of the three-dimensional crystal structures and the catalytic reactions of three enzymes: dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase, as well as their inhibitors are reviewed in the context of their therapeutic potential against malaria.
文摘The gene cluster for the biosynthetic of a nonribosomal peptide, cyanopeptolins and micropeptin (MCN), was identified in Microcystis strains and halogenated MCN-producing Microcystis were found to possess the halogenase gene, mcnD, between nonribosomal peptide synthetase genes, mcnC and mcnE. A comparative sequence analysis of the mcn gene cluster between halogenated and non-halogenated MCN-producing strains revealed mosaic sequence traces from mcnD in the non-coding region between mcnC and mcnE in the latter strains. A phylogenetic analysis based on a 170-bp non-coding region including the mcnD traces suggests that the recombination events occurred in a particular region of the Microcystis’ mcn gene. This study provides novel insight into the ecological patterning of widespread Microcystis species.
基金the National Natural Science Foundation of China(81773891)the National Great New Drugs Development Project of China(2017ZX09301-040)+3 种基金the Beijing Natural Science Foundation(7162092)Beijing Talents Project(2017A19)Beijing Municipal Science&Technology Commission(XMLX201704,Z161100000516074)the Open Research Fund of the State Key Laboratory Breeding Base of Systematic Research,Development and Utilization of Chinese Medicinal Resources.
文摘Quality marker(Q-marker)of Chinese materia medica(CMM)plays an important role in quality control of CMM products.However,its research strategy and technique remain unclear.Based on the fact that quality standard of CMM should be associated with clinical efficacy,taking Jinqi Jiangtang tablet treating type 2 diabetes as an example,the Q-marker related to activity via the reverse analysis of drug metabolism in clinic and traceability of botanic biosynthetic pathways is discovered and validated.Therefore,we proposed a new research strategy of Q-marker of CMM with"Discovery of clinical active constituents as guidance,Reverse analysis of metabolic transformations as link,and Traceability of biosynthesis pathways as key",to improve quality control of CMM products.
基金supported by The University of Queensland(UQ postdoctoral fellowship to X.Jia)and the National Natural Science Foundation of China(no.31970054 to X.Qu).
文摘Mollemycin A(MOMA)is a unique glyco-hexadepsipeptide-polyketide that was isolated from a Streptomyces sp.derived from the Australian marine environment.MOMA exhibits remarkable inhibitory activity against both drug-sensitive and multidrug-resistant malaria parasites.Optimizing MOMA through structural modifications or product enhancements is necessary for the development of effective analogues.However,modifying MOMA using chemical approaches is challenging,and the production titer of MOMA in the wild-type strain is low.This study identified and characterized the biosynthetic gene cluster of MOMA for the first time,proposed its complex biosynthetic pathway,and achieved an effective two-pronged enhancement of MOMA production.The fermentation medium was optimized to increase the yield of MOMA from 0.9 mg L^(-1)to 1.3 mg L^(-1),a 44%boost.Additionally,a synergistic mutant strain was developed by deleting the momB3 gene and overexpressing momB2,resulting in a 2.6-fold increase from 1.3 mg L^(-1)to 3.4 mg L^(-1).These findings pave the way for investigating the biosynthetic mechanism of MOMA,creating opportunities to produce a wide range of MOMA analogues,and developing an efficient strain for the sustainable and economical production of MOMA and its analogues.
基金fellowships from the Israel Ministry of Absorption and the Dean of the Plant Science Department in the Weizmann Institute.We thank Prof.David Nelson(University of Tennessee,USA)for the systematic naming of the cytochrome P450 enzymes characterized in this studyShmuel Regev and The Regev Nursery(Beit Elazari,Israel)for help in differentiating among Lophophora species+2 种基金Dr.Ziv Spiegelman for providing several N.benthamiana plantsXINTEZA(https://xinteza.com/)for funding this researchand the Adelis Foundation,the Leona M.and Harry B.Helmsley Charitable Trust,the Jeanne and Joseph Nissim Foundation for Life Sciences,Tom and Sondra Rykoff Family Foundation Research,Ron Sklare and the Raymond Burton Plant Genome Research Fund for supporting the A.A.laboratory。
文摘Mescaline,among the earliest identified natural hallucinogens,holds great potential in psychotherapy treatment.Nonetheless,despite the existence of a postulated biosynthetic pathway for more than half a century,the specific enzymes involved in this process are yet to be identified.In this study,we investigated the cactus Lophophora williamsii(Peyote),the largest known natural producer of the phenethylamine mescaline.We employed a multi-faceted approach,combining de novo whole-genome and transcriptome sequencing with comprehensive chemical profiling,enzymatic assays,molecular modeling,and pathway engineering for pathway elucidation.We identified four groups of enzymes responsible for the six catalytic steps in the mescaline biosynthetic pathway,and an N-methyltransferase enzyme that N-methylates all phenethylamine intermediates,likely modulating mescaline levels in Peyote.Finally,we reconstructed the mescaline biosynthetic pathway in both Nicotiana benthamiana plants and yeast cells,providing novel insights into several challenges hindering complete heterologous mescaline production.Taken together,our study opens up avenues for exploration of sustainable production approaches and responsible utilization of mescaline,safeguarding this valuable natural resource for future generations.
文摘Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from‘omics’approaches.Here,we characterized metagenome-assembled-genomes(MAGs)from the surface sediment microbes of the Venice Lagoon(northern Adriatic Sea)in distinct sub-basins exposed to various natural and anthropogenic pressures.MAGs were explored for biodiversity,major marine metabolic processes,anthropogenic activity-related functions,adaptations at the microscale,and biosynthetic gene clusters.Starting from 126 MAGs,a non-redundant dataset of 58 was compiled,the majority of which(35)belonged to(Alpha-and Gamma-)Proteobacteria.Within the broad microbial metabolic repertoire(including C,N,and S metabolisms)the potential to live without oxygen emerged as one of the most important features.Mixotrophy was also found as a successful lifestyle.Cluster analysis showed that different MAGs encoded the same metabolic patterns(e.g.,C fixation,sulfate oxidation)thus suggesting metabolic redundancy.Antibiotic and toxic compounds resistance genes were coupled,a condition that could promote the spreading of these genetic traits.MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification.Our results highlighted that bacteria living in an impacted environment,such as the surface sediments of the Venice Lagoon,may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites,promoting ecosystem resilience and stability toward environmental pressures.
基金This work was supported by the National Key R&D Program of China(Nos.2020YFA0908000,2018YFA0900600)the National Natural Science Foundation of China(Nos.82003904,81822046)+4 种基金the Fundamental Research Funds for the Central public welfare research institutes(No.ZZ13-YQ-083)a Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences(No.CI2021A04110)Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(No.ZYYCXTD-D-202005)a key project at central government level(the ability to establish sustainable use of valuable Chinese medicine resources2060302,China).
文摘Danshen,the dried roots and rhizomes of Salvia miltiorrhiza Bunge(S.miltiorrhiza),is widely used in the treatment of cardiovascular and cerebrovascular diseases.Tanshinones,the bioactive compounds from Danshen,exhibit a wide spectrum of pharmacological properties,suggesting their potential for future therapeutic applications.Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized,most of which belong to the CYP76 and CYP71 families.In this study,CYP81C16,a member of the CYP71 clan,was identified in S.miltiorrhiza.An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones,namely neocryptotanshinone,deoxyneocryptotanshinone,and danshenxinkuns A and B.SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%.Kinetic evaluations and in vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates.The overexpression of SmCYP81C16 promoted the accumulation of(iso)tanshinone in hairy root lines.The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones,either through microbial or plant metabolic engineering.
基金the National Key R&D Program of China(grant No.2021YFC2103500)National Natural Science Foundation of China(grant No.22078169)+1 种基金Natural Science Foundation of Shandong Province,China(ZR2021MC074,ZR2020MC008)Shandong Provincial Key Research and Development Plan(2021ZDSYS28).
文摘Methylobacterium species,the representative bacteria distributed in phyllosphere region of plants,often synthesize carotenoids to resist harmful UV radiations.Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C_(30) backbone.However,its exact structure remains unknown.In the present study,the carotenoid produced by M.extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-β-glucopyranosyl]-4,4′-diapolycopenedioc acid(1),a glycosylated C_(30) carotenoid.Furthermore,the genes related to the C_(30)carotenoid synthesis were investigated.Squalene,the precursor of the C_(30) carotenoid,is synthesized by the co-occurrence of META1p1815,META1p1816 and META1p1817.Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1.By using gene deletion and gene complementation experiments,the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4′-diapolycopene-4,4′-dioic acid to carotenoid 1.In conclusion,the structure and biosynthetic genes of carotenoid 1 produced by M.extorquens AM1 were firstly characterized in this work,which shed lights on engineering M.extorquens AM1 for producing carotenoid 1 in high yield.
文摘De novo nucleotide biosynthetic pathway is a highly conserved and essential biochemical pathway in almost all organisms.Both purine nucleotides and pyrimidine nucleotides are necessary for cell metabolism and proliferation.Thus,the dysregulation of the de novo nucleotide biosynthetic pathway contributes to the development of many human diseases,such as cancer.It has been shown that many enzymes in this pathway are overactivated in different cancers.In this review,we summarize and update the current knowledge on the de novo nucleotide biosynthetic pathway,regulatory mechanisms,its role in tumorigenesis,and potential targeting opportunities.
基金supported in part by grants from the National Key Research and Development Program of China(2018YFA0901900)the National Natural Science Foundation of China(22137009)the China Postdoctoral Science Foundation(2020M671271).
文摘A 61-kb biosynthetic gene cluster(BGC),which is accountable for the biosynthesis of hibarimicin(HBM)B from Microbispora rosea subsp.hibaria TP-A0121,was heterologously expressed in Streptomyces coelicolor M1154,which generated a trace of the target products but accumulated a large amount of shunt products.Based on rational analysis of the relevant secondary metabolism,directed engineering of the biosynthetic pathways resulted in the high production of HBM B,as well as new HBM derivates with improved antitumor activity.These results not only establish a biosynthetic system to effectively synthesize HBMs-a class of the largest and most complex Type-Ⅱpolyketides,with a unique pseudo-dimeric structure-but also set the stage for further engineering and deep investigation of this complex biosynthetic pathway toward potent anticancer drugs.
基金the National Key R&D Program of China(2020YFA0908000)National Science Fund for Excellent Young Scholars(31922047)+1 种基金Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(No.TSBICIP-KJGG-002)the China Postdoctoral Science Foundation(No.2019M661032)。
文摘Taxus,commonly known as yew,is a well-known gymnosperm with great ornamental and medicinal value.In this study,by assembling a chromosome-level genome of the Himalayan yew(Taxus wallichiana)with 10.9 Gb in 12 chromosomes,we revealed that tandem duplication acts as the driving force of gene family evolution in the yew genome,resulting in the main genes for paclitaxel biosynthesis,i.e.those encoding the taxadiene synthase,P450s,and transferases,being clustered on the same chromosome.The tandem duplication may also provide genetic resources for the nature to sculpt the core structure of taxoids at different positions and subsequently establish the complex pathway of paclitaxel by neofunctionalization.Furthermore,we confirmed that there are two genes in the cluster encoding isoenzymes of a known enzyme in the paclitaxel biosynthetic pathway.The reference genome of the Himalayan yew will serve as a platform for decoding the complete biosynthetic pathway of paclitaxel and understanding the chemodi-versity of taxoids in gymnosperms.
文摘Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology.
基金supported by the Jiangsu Agriculture Science and Technology Innovation Fund[CX(14)2015]China Agriculture Research System(CARS-31)
文摘The aim of our study was to assess differences in the expression of genes involved in fruit softening and ethylene biosynthetic pathways under different temperature storage conditions. Different peach cultivars of ‘Xiacui' and ‘Yumyeong', which are stonyhard, ‘Yinhualu', which is softmelting, ‘Hujing Milu', which is hard-melting, and ‘Baby Gold 6', which is non-melting at 80% ripening, were collected as test materials. The results showed that only slight ethylene production was detected after harvesting of ‘Yumyeong' and ‘Xiacui' under either a room temperature(25 °C) or low temperature(4 °C). The fruit firmness of stonyhard cultivars was retained at a high level under room temperature over time, whereas a low temperature induced ‘Yumyeong' fruit to soften. Quantitative real-time PCR results indicated that the PpACS1 gene was highly expressed in soft-melting, hard-melting and non-melting cultivars; however, expression was extremely low in stonyhard peaches. PpACS2 or PpACS3, however,was not detected in all five cultivars. Interestingly, cold treatment significantly decreased firmness along with endo-PG expression obviously upregulated in ‘Yumyeong', but not in ‘Xiacui' peaches. In conclusion, this study revealed that fruit softening of peaches with different flesh textures was closely related to ethylene biosynthesis during the storage period, which was controlled via regulating relevant gene expression levels under different storage temperatures.