We introduce bivariate normal distribution operator for state vector [ψ) and find that its marginal distribution leads to one-dimensional normal distribution corresponding to the measurement probability |λ,v〈x|...We introduce bivariate normal distribution operator for state vector [ψ) and find that its marginal distribution leads to one-dimensional normal distribution corresponding to the measurement probability |λ,v〈x|.ψ〉|^2, where |x〉λ,v is the coordinate-momentum intermediate representation. As a by-product, the one-dimensional normal distribution in statistics can be explained as a Radon transform of two-dimensional Gaussian function.展开更多
We introduce a kind of generalized Wigner operator,whose normally ordered form can lead to the bivariatenormal distribution in p-q phase space.While this bivariate normal distribution corresponds to the pure vacuum st...We introduce a kind of generalized Wigner operator,whose normally ordered form can lead to the bivariatenormal distribution in p-q phase space.While this bivariate normal distribution corresponds to the pure vacuum state inthe generalized Wigner function phase space,it corresponds to a mixed state in the usual Wigner function phase space.展开更多
This note derives the relationship between the Pearson product-moment coefficient of correlation and the Spearman rank-based coefficient of correlation for the bivariate normal distribution. This new derivation shows ...This note derives the relationship between the Pearson product-moment coefficient of correlation and the Spearman rank-based coefficient of correlation for the bivariate normal distribution. This new derivation shows the relationship between the two correlation coefficients through an infinite cosine series. A computationally efficient algorithm is also provided to estimate the relationship between the Pearson product-moment coefficient of correlation and the Spearman rank-based coefficient of correlation. The algorithm can be implemented with relative ease using current modern mathematical or statistical software programming languages e.g. R, SAS, Mathematica, Fortran, et al. The algorithm is also available from the author of this article.展开更多
基金supported by National Natural Science Foundation of China under Grant No.10574647
文摘We introduce bivariate normal distribution operator for state vector [ψ) and find that its marginal distribution leads to one-dimensional normal distribution corresponding to the measurement probability |λ,v〈x|.ψ〉|^2, where |x〉λ,v is the coordinate-momentum intermediate representation. As a by-product, the one-dimensional normal distribution in statistics can be explained as a Radon transform of two-dimensional Gaussian function.
基金National Natural Science Foundation of China under Grant Nos.10775097 and 10874174
文摘We introduce a kind of generalized Wigner operator,whose normally ordered form can lead to the bivariatenormal distribution in p-q phase space.While this bivariate normal distribution corresponds to the pure vacuum state inthe generalized Wigner function phase space,it corresponds to a mixed state in the usual Wigner function phase space.
文摘This note derives the relationship between the Pearson product-moment coefficient of correlation and the Spearman rank-based coefficient of correlation for the bivariate normal distribution. This new derivation shows the relationship between the two correlation coefficients through an infinite cosine series. A computationally efficient algorithm is also provided to estimate the relationship between the Pearson product-moment coefficient of correlation and the Spearman rank-based coefficient of correlation. The algorithm can be implemented with relative ease using current modern mathematical or statistical software programming languages e.g. R, SAS, Mathematica, Fortran, et al. The algorithm is also available from the author of this article.