Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly charact...Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly characterized by its green abaxial leaf blade,partly connate stipules,and densely patent strigose hairs on stems and potioles.The phylogenetic analysis based on rbc L,nrDNA and rbc L+nrDNA datasets,revealed that all individuals of B.nivea var.strigosa formed a monophyletic group.The conservation status of B.nivea var.strigosa is assessed as“Near Threatened”(NT)according to IUCN evaluation criteria.The discovery of this new variety is not only crucial for the taxonomy of ramie,but also provides reference for the exploration and utilization of ramie.展开更多
AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e ...AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), and HBV DNA were measured by using ELISA and real-time PCR, respectively. Viral DNA replication and RNA expression were determined by using Southern and Northern blot, respectively. RESULTS: In HepG2 2.2.15 cells, HBeAg (60%, P < 0.01) and particle-associated HBV DNA (> 99%, P < 0.01) secretion into supernatant were significantly inhibited by BNE at a dose of 100 mg/L, whereas the HBsAg was not inhibited. With different doses of BNE, the reduced HBeAg was correlated with the inhibition of HBV DNA. The anti-HBV effect of BNE was not caused by its cytotoxicity to cells or inhibition of viral DNA replication and RNA expression. CONCLUSION: BNE could effectively reduce the HBV production and its anti-HBV machinery might differ from the nucleoside analogues.展开更多
A new quinolizidine alkaloid. 3-(4-hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl)-3,4-dihydroquinolizidine (1). was isolated from the ethanol extract of the whole plants of Boehmeria siamensis Craib. Its structure was e...A new quinolizidine alkaloid. 3-(4-hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl)-3,4-dihydroquinolizidine (1). was isolated from the ethanol extract of the whole plants of Boehmeria siamensis Craib. Its structure was elucidated on the analysis of ID NMR and 2D NMR spectrum.展开更多
By using cpSSR (chloroplast microsatellites) markers, the genetic relationship among Boehmeria varieties was analyzed. Five pairs of cpSSR primers with excellent amplification result, clear amplification band and go...By using cpSSR (chloroplast microsatellites) markers, the genetic relationship among Boehmeria varieties was analyzed. Five pairs of cpSSR primers with excellent amplification result, clear amplification band and good repeatability were screened from 22 pairs of cpSSR primers, and the polymorphism rate was 22.73%. By using these five pairs of cpSSR primers, 16 polymorphic loci were amplified from eight experimental materials, with an average of 3.2 loci. According to the results of duster analysis, these experimental materials were divided into three categories. The clustering results were consistent with the classification results based on chloroplast gene sequences.展开更多
Six male sterile lines (MSLs) of ramie (Boeh-meria nivea (L.) Gaud.) were grown in dark rooms under the photoperiods of 9.5h, 11h or 12.5h d-1 in spring and summer seasons (dif-ferent environmental temperatures) to te...Six male sterile lines (MSLs) of ramie (Boeh-meria nivea (L.) Gaud.) were grown in dark rooms under the photoperiods of 9.5h, 11h or 12.5h d-1 in spring and summer seasons (dif-ferent environmental temperatures) to test their developmental response to photoperiod and temperature. The MSLs showed little difference in vegetative growth duration, but different de-velopment rates in the reproductive growth stage under the tested conditions. Higher tem-perature (grown in summer) mainly accelerated vegetative growth, while the short photoperiod treatment accelerated the reproductive growth of the MSLs. Moreover, the short photoperiod treatment combined with higher temperature obviously accelerated both the vegetative and reproductive growth of the MSLs. But the effect of higher temperature decreased, or even dis-appeared along with the photoperiod elongation. The MSLs were divided into 5 photo-temperature response types, based on the flower budding acceleration of short pho-toperiod and the approximate temperature re-sponse index.展开更多
In this paper,the advances in the study on Phytophthora boehmeriae,including geographical distribution,host range,morphology,biology,ecology,detection,control etc,are reviewed to provide a useful information for the i...In this paper,the advances in the study on Phytophthora boehmeriae,including geographical distribution,host range,morphology,biology,ecology,detection,control etc,are reviewed to provide a useful information for the integrated management of the diseases caused by the oomycete and for the related research.展开更多
We have devised a high-throughput functional cloning method to isolate cDNAs from Phytophthora boehmeriae of which the products elicit a hypersensitive response (HR) in tobacco. The cDNAs were cloned into a binary pot...We have devised a high-throughput functional cloning method to isolate cDNAs from Phytophthora boehmeriae of which the products elicit a hypersensitive response (HR) in tobacco. The cDNAs were cloned into a binary potato virus X (PVX)-based expression vector and transformed into Agrobacterium tumefeciens (Mog101). 4100 colonies were individually toothpick-inoculated onto leaflets of Nicotiana benthamiana. 12 cDNAs were identified whose expression induced formation of a necrotic lesion around the inoculation site. 7 of these clones have different sequences. One of these clones PBC43 encodes specific elicitin. Clone PBC163 encodes a protein highly homologous to Rab; PBC241 en-codes a prohibitin protein; PBN62 encodes a Heat Shock Protein 60 (HSP60). The other five cDNAs reveal no homology to known protein and are thus considered novel. These observations suggest that this functional screening method is a versatile strategy to identify cDNAs of pathogens that encode elicitors and other HR-inducing proteins.展开更多
文摘Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly characterized by its green abaxial leaf blade,partly connate stipules,and densely patent strigose hairs on stems and potioles.The phylogenetic analysis based on rbc L,nrDNA and rbc L+nrDNA datasets,revealed that all individuals of B.nivea var.strigosa formed a monophyletic group.The conservation status of B.nivea var.strigosa is assessed as“Near Threatened”(NT)according to IUCN evaluation criteria.The discovery of this new variety is not only crucial for the taxonomy of ramie,but also provides reference for the exploration and utilization of ramie.
文摘AIM: To explore the anti-hepatitis B virus (HBV) effects of Boehmeria nivea (B. nivea) root extract (BNE) by using the HepG2 2.2.15 cell model system. METHODS: Hepatitis B surface antigen (HBsAg), hepatitis B virus e antigen (HBeAg), and HBV DNA were measured by using ELISA and real-time PCR, respectively. Viral DNA replication and RNA expression were determined by using Southern and Northern blot, respectively. RESULTS: In HepG2 2.2.15 cells, HBeAg (60%, P < 0.01) and particle-associated HBV DNA (> 99%, P < 0.01) secretion into supernatant were significantly inhibited by BNE at a dose of 100 mg/L, whereas the HBsAg was not inhibited. With different doses of BNE, the reduced HBeAg was correlated with the inhibition of HBV DNA. The anti-HBV effect of BNE was not caused by its cytotoxicity to cells or inhibition of viral DNA replication and RNA expression. CONCLUSION: BNE could effectively reduce the HBV production and its anti-HBV machinery might differ from the nucleoside analogues.
文摘A new quinolizidine alkaloid. 3-(4-hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl)-3,4-dihydroquinolizidine (1). was isolated from the ethanol extract of the whole plants of Boehmeria siamensis Craib. Its structure was elucidated on the analysis of ID NMR and 2D NMR spectrum.
基金Supported by Fund for Basic Scientific Research and Operating Expenses of Chinese Academy Of Agricultural Sciences(1610032012030)
文摘By using cpSSR (chloroplast microsatellites) markers, the genetic relationship among Boehmeria varieties was analyzed. Five pairs of cpSSR primers with excellent amplification result, clear amplification band and good repeatability were screened from 22 pairs of cpSSR primers, and the polymorphism rate was 22.73%. By using these five pairs of cpSSR primers, 16 polymorphic loci were amplified from eight experimental materials, with an average of 3.2 loci. According to the results of duster analysis, these experimental materials were divided into three categories. The clustering results were consistent with the classification results based on chloroplast gene sequences.
文摘Six male sterile lines (MSLs) of ramie (Boeh-meria nivea (L.) Gaud.) were grown in dark rooms under the photoperiods of 9.5h, 11h or 12.5h d-1 in spring and summer seasons (dif-ferent environmental temperatures) to test their developmental response to photoperiod and temperature. The MSLs showed little difference in vegetative growth duration, but different de-velopment rates in the reproductive growth stage under the tested conditions. Higher tem-perature (grown in summer) mainly accelerated vegetative growth, while the short photoperiod treatment accelerated the reproductive growth of the MSLs. Moreover, the short photoperiod treatment combined with higher temperature obviously accelerated both the vegetative and reproductive growth of the MSLs. But the effect of higher temperature decreased, or even dis-appeared along with the photoperiod elongation. The MSLs were divided into 5 photo-temperature response types, based on the flower budding acceleration of short pho-toperiod and the approximate temperature re-sponse index.
基金Supported by Subject Talent Foundation of Anhui Province(200203).
文摘In this paper,the advances in the study on Phytophthora boehmeriae,including geographical distribution,host range,morphology,biology,ecology,detection,control etc,are reviewed to provide a useful information for the integrated management of the diseases caused by the oomycete and for the related research.
基金the Nation Natural Science Foundation of China (Grant No. 30300228)the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20020307035)the Student Research Training of Nanjing Agricultural University (Grant No. 0402A04)
文摘We have devised a high-throughput functional cloning method to isolate cDNAs from Phytophthora boehmeriae of which the products elicit a hypersensitive response (HR) in tobacco. The cDNAs were cloned into a binary potato virus X (PVX)-based expression vector and transformed into Agrobacterium tumefeciens (Mog101). 4100 colonies were individually toothpick-inoculated onto leaflets of Nicotiana benthamiana. 12 cDNAs were identified whose expression induced formation of a necrotic lesion around the inoculation site. 7 of these clones have different sequences. One of these clones PBC43 encodes specific elicitin. Clone PBC163 encodes a protein highly homologous to Rab; PBC241 en-codes a prohibitin protein; PBN62 encodes a Heat Shock Protein 60 (HSP60). The other five cDNAs reveal no homology to known protein and are thus considered novel. These observations suggest that this functional screening method is a versatile strategy to identify cDNAs of pathogens that encode elicitors and other HR-inducing proteins.
基金National Natural Science Foundation of China(30270849),High-Tech Research and Development Program of China (2001AA241211) and Hunan Provincial Natural Science Foundation (04JJ3016)