期刊文献+
共找到16,329篇文章
< 1 2 250 >
每页显示 20 50 100
Failure characterization of fully grouted rock bolts under triaxial testing 被引量:1
1
作者 Hadi Nourizadeh Ali Mirzaghorbanali +3 位作者 Mehdi Serati Elamin Mutaz Kevin McDougall Naj Aziz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期778-789,共12页
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st... Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism. 展开更多
关键词 Rock bolts bolt-grout interface Bond strength Push test Triaxial tests
下载PDF
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
2
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
Excavation compensation and bolt support for a deep mine drift
3
作者 Longji Guo Zhigang Tao +1 位作者 Manchao He Massimo Coli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3206-3220,共15页
To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 13... To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry. 展开更多
关键词 Deep phosphate rock NPR bolt Split-set rock bolt PFC3D-FLAC3D Compensation support
下载PDF
State-of-the-art on the anchorage performance of rock bolts subjected to shear load 被引量:2
4
作者 Yu Chen Haodong Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期1-30,共30页
Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults... Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts. 展开更多
关键词 Rock bolt Shear load Shear test Numerical simulation Analytical model
下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads 被引量:1
5
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
下载PDF
Shear behavior of single-joint bolted sandstone subjected to dryewet cycles:Experimental and analytical approaches 被引量:1
6
作者 Luobin Zheng Kaiwen Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4216-4228,共13页
A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show tha... A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions. 展开更多
关键词 Reinforcement technique Interface behavior bolted sandstone Cyclic dryingewetting Analytical model
下载PDF
Optimizing support performances of bolt reaming and anchoring in a coal drift 被引量:1
7
作者 Wei Wang Yishan Pan +7 位作者 Yonghui Xiao Lianpeng Dai Xinping Zhang Yuheng Wang Xufeng Qin Yanfei Zhu Yan Liu Gang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3885-3906,共22页
In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area an... In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area and does not participate in the stirring.As a result,bolts encounter high drilling resistance and cannot reach the bottom of drillholes.The effective anchorage length is far less than the actual anchorage length.Bolts are not centered,and the shear is misaligned at the joint surface in the reaming area,which leads to cracking of the whole anchoring solid and large shear deformation of bolts.This study systematically analyzes the characteristics of roadway bolt reaming and anchoring.The influences of resin stirring force,bolt pull-out force,and reamingeanchoring solid strength on reamingeanchoring performance were analyzed theoretically.The main purpose is to develop a device that enhances reaming and anchoring.The mechanism through which the device strengthens the reamingeanchoring solid was analyzed theoretically.Numerical simulation and experiments were carried out to verify the improved performance of the small-pore reaming and anchoring using the proposed technology.The results showed that the stirring migration rate of the resin cartridge is greatly improved by adding the device to bolts.The reaction rate of the anchoring mixture,stirring pressure,pull-out force of the reaming and anchoring system,bolt concentricity,and shear and compressive strengths of the anchoring solid are also enhanced in the reaming area.This ensures that the resin cartridge in the reaming area is completely stirred,which greatly improves the shear resistance of the reamingeanchoring solid.Meanwhile,the drilling performance,torsional force,and stirring efficiency of bolts are maximized and prevail over those of conventional bolts. 展开更多
关键词 bolt reaming Enhancement device Reamingeanchoring performance Strength of reamingeanchoring solid Bearing capacity
下载PDF
Stability analysis of tunnel face reinforced with face bolts
8
作者 TIAN Chongming JIANG Yin +3 位作者 YE Fei OUYANG Aohui HAN Xingbo SONG Guifeng 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2445-2461,共17页
Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systemat... Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systematically studied.Based on the theory of linear elastic mechanics,this study delved into the specific mechanisms of bolt reinforcement on the tunnel face in both horizontal and vertical dimensions.It also identified the primary failure types of bolts.Additionally,a design approach for tunnel face bolts that incorporates spatial layout was established using the limit equilibrium method to enhance the conventional wedge-prism model.The proposed model was subsequently validated through various means,and the specific influence of relevant bolt design parameters on tunnel face stability was analyzed.Furthermore,design principles for tunnel face bolts under different geological conditions were presented.The findings indicate that bolt failure can be categorized into three stages:tensile failure,pullout failure,and comprehensive failure.Increasing cohesion,internal friction angle,bolt density,and overlap length can effectively enhance tunnel face stability.Due to significant variations in stratum conditions,tailored design approaches based on specific failure stages are necessary for bolt design. 展开更多
关键词 Highway tunnels Tunnel face Face bolts Limit equilibrium method Slice method
下载PDF
Anchoring mechanical characteristics of Ductile-Expansion bolt
9
作者 Yu Chen Wang Liu +4 位作者 Linchong Huang Hang Lin Yixian Wang Yanlin Zhao Cungang Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1115-1134,共20页
The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the... The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance. 展开更多
关键词 Ductile-Expansion bolt Pull-out test Peak load Anchoring mechanical characteristics
下载PDF
Numerical Optimization by Finite Element Method of Stainless Steel/Glass-Epoxy Composite Bolted Joint under Tension and Compression
10
作者 Christian Schmitt Arnaud Kremeur +1 位作者 Pawel Lipinski Julien Capelle 《Engineering(科研)》 2024年第4期102-122,共21页
The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in... The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in each component of the bolted join. The multi-material assembly was based on the principle of double lap bolted joint. It was composed of a symmetrical balanced woven glass-epoxy composite material plate fastened to two stainless sheets using a stainless pre-stressed bolt. In order to optimize the design and the geometry of the assembly, ten configurations were proposed and studied: a classical simple bolted joint, two joints with an insert (a BigHead<sup>R</sup> insert and a stair one) embedded in the composite, two “waved” solutions, three symmetrical configurations composed of a succession of metallic and composites layers, without a sleeve, with one and with two sleeves, and two non-symmetrical constituted of metallic and composites layers associated with a stair-insert (one with a sleeve and one without). A tridimensional Finite Element Method (FEM) was used to model each configuration mentioned above. The FE models taked into account the different materials, the effects of contact between the different sheets of the assembly and the pre-stress in the bolt. The stress state was analyzed in the composite part. The concept of stress concentration factor was used in order to evaluate the stress increase in the highly stressed regions and to compare the ten configurations studied. For this purpose, three stress concentration factors were defined: one for a monotonic loading in tension, another for a monotonic loading in compression, and the third for a tension-compression cyclic loading. The results of the FEM computations showed that the use of alternative metallic and composite layers associated with two sleeves gived low values of stress concentration factors, smaller than 1.4. In this case, there was no contact between the bolt and the composite part and the most stressed region was not the vicinity of the hole but the end of the longest layers of the metallic inserts. 展开更多
关键词 bolted Joint Glass-Epoxy Composite CLEARANCE Hybrid Steel-Composite
下载PDF
Study on Fracture Delay of High-Strength Bolts in Road Bridge Maintenance
11
作者 Rongpeng Xu 《Journal of Architectural Research and Development》 2024年第5期1-6,共6页
In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture dela... In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects. 展开更多
关键词 Highway bridge engineering Bridge maintenance High-strength bolts Fracture delay Maintenance recommendations
下载PDF
Development of the rolling extrusion rock bolt with constant resistance and large deformation
12
作者 Yundong Shou Limin Guo Xiaoping Zhou 《Deep Resources Engineering》 2024年第1期41-52,共12页
With the increasing excavation depth of underground engineering,engineering problems such as large deformation and rock burst caused by high geo-stress brings new challenges to the excavation and reinforcement of surr... With the increasing excavation depth of underground engineering,engineering problems such as large deformation and rock burst caused by high geo-stress brings new challenges to the excavation and reinforcement of surrounding rock in deep underground engineering.The traditional rock bolt is prone to brittle fracture under high geo-stress due to its low elongation.Therefore,this work aims to develop a novel energy-absorbing bolt with constant resistance and large displacement to reinforce the surrounding rock with a risk of large deformation or rockburst.The novel energy-absorbing bolt refereed as rolling extrusion rock bolt(RE bolt)is mainly consists of sleeve tube with a variable cross-section,energy absorption slider with steel balls embedded,steel bar connected with the energy absorption slider.The rolling extrusion is adopted to produce the resistance force of the RE bolt,which avoids the sudden attenuation of resistance force and the abrasion of the energy absorption slider.The static pull test is conducted to study the resistance force and deformation characteristics of the RE bolt with different specifications.Results imply that the RE bolt has higher resistance force,larger deformation capacity and energy absorption capacity.The work of this study provides an effective solution for the reinforcement of surrounding rock in deep rock engineering. 展开更多
关键词 Energy-absorbing bolt Rolling extrusion Static pull test Constant resistance Large deformation
下载PDF
Principles of rockbolting design 被引量:16
13
作者 Charlie C. Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期14-32,共19页
This article introduces the principles of underground rockbolting design.The items discussed include underground loading conditions,natural pressure zone around an underground opening,design methodologies,selection of... This article introduces the principles of underground rockbolting design.The items discussed include underground loading conditions,natural pressure zone around an underground opening,design methodologies,selection of rockbolt types,determination of bolt length and spacing,factor of safety,and compatibility between support elements.Different types of rockbolting used in engineering practise are also presented.The traditional principle of selecting strong rockbolts is valid only in conditions of low in situ stresses in the rock mass.Energy-absorbing rockbolts are preferred in the case of high in situ stresses.A natural pressure arch is formed in the rock at a certain distance behind the tunnel wall.Rockbolts should be long enough to reach the natural pressure arch when the failure zone is small.The bolt length should be at least 1 m beyond the failure zone.In the case of a vast failure zone,tightly spaced short rockbolts are installed to establish an artificial pressure arch within the failure zone and long cables are anchored on the natural pressure arch.In this case,the rockbolts are usually less than 3 m long in mine drifts,but can be up to 7 m in large-scale rock caverns.Bolt spacing is more important than bolt length in the case of establishing an artificial pressure arch.In addition to the factor of safety,the maximum allowable displacement in the tunnel and the ultimate displacement capacity of rockbolts must be also taken into account in the design.Finally,rockbolts should be compatible with other support elements in the same support system in terms of displacement and energy absorption capacities. 展开更多
关键词 Rockbolting design Pressure arch bolt length bolt spacing Factor of safety
下载PDF
Influence of anchorage length and pretension on the working resistance of rock bolt based on its tensile characteristics 被引量:3
14
作者 Jucai Chang Kai He +3 位作者 Dongdong Pang Dong Li Chuanming Li Bingjun Sun 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1384-1399,共16页
In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway su... In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway support.Based on the rock bolt’s tensile characteristics and the mining roadway surrounding rock deformation,a mechanical model for calculating the working resistance of the rock bolt was established and solved.Taking the mining roadway of the 17102(3)working face at the Panji No.3 Coal Mine of China as a research site,with a quadrilateral section roadway,the influence of pretension and anchorage length on the working resistance of high-strength and ordinary rock bolts in the middle and corner of the roadway is studied.The results show that when the bolt is in the elastic stage,increasing the pretension and anchorage length can effectively improve the working resistance.When the bolt is in the yield and strain-strengthening stages,increasing the pretension and anchorage length cannot effectively improve the working resistance.The influence of pretension and anchorage length on the ordinary and high-strength bolts is similar.The ordinary bolt’s working resistance is approximately 25 kN less than that of the high-strength bolt.When pretension and anchorage length are considered separately,the best pretensions of the high-strength bolt in the middle of the roadway side and the roadway corner are 41.55 and 104.26 kN,respectively,and the best anchorage lengths are 1.54 and 2.12 m,respectively.The best anchorage length of the ordinary bolt is the same as that of the high-strength bolt,and the best pretension for the ordinary bolt in the middle of the roadway side and at the roadway corner is 33.51 and 85.12 kN,respectively.The research results can provide a theoretical basis for supporting the design of quadrilateral mining roadways. 展开更多
关键词 Working resistance of rock bolt PRETENSION Anchorage length Ordinary bolt High-strength bolt Quadrilateral section roadway
下载PDF
Stress state and caving danger of the roof in bolt supporting roadway
15
作者 刘少伟 许莉莉 《Journal of Coal Science & Engineering(China)》 2006年第2期34-36,共3页
The start point of this text is the bottleneck problem of bolt supporting coal entrythat is security problem of bolt supporting roof,we divide one entry into some sections withdifferent stress,simulate stress field of... The start point of this text is the bottleneck problem of bolt supporting coal entrythat is security problem of bolt supporting roof,we divide one entry into some sections withdifferent stress,simulate stress field of wall rock and rockbolt solidified at different sectionsused umbrella disperse soft UDEC(universal distinct element code),we educe that thestress level of wallrock and bolt solidified is higher in roof fall risk section,and roof rockboltload can reflect this rule clearly,that offer an important guideline in monitoring entry rooffall risk. 展开更多
关键词 bolt supporting rockbolt solidified stress roof fall roof rockbolt
下载PDF
Laboratory pull-out tests on fully grouted rock bolts and cable bolts:Results and lessons learned 被引量:19
16
作者 Isabelle Thenevin Laura Blanco-Martín +3 位作者 Faouzi Hadj-Hassen Jacques Schleifer Zbigniew Lubosik Aleksander Wrana 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第5期843-855,共13页
Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini... Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface. 展开更多
关键词 Pull-out test Fully grouted bolts Laboratory-scale Confining pressure Embedment length bolt-grout interface
下载PDF
Fundamental principles of an effective reinforcing roof bolting strategy in horizontally layered roof strata and areas of potential improvement 被引量:7
17
作者 Russell Frith Guy Reed Martin McKinnon 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第1期67-77,共11页
It is arguable that the development of reinforcing roof bolting systems has largely stagnated in recent times, primarily due to the prevailing industry view that few, if any, further improvements can be made to what c... It is arguable that the development of reinforcing roof bolting systems has largely stagnated in recent times, primarily due to the prevailing industry view that few, if any, further improvements can be made to what currently exists.However, this paper contends that reinforcing roof bolting systems can be further refined by considering both the specific manner by which horizontally bedded roof strata loses its natural self-supporting ability and the specific means by which reinforcing roof bolts act to promote or retain this natural self-supporting ability.The Australian coal industry has insisted on minimising bolt-hole diameter to maximise load transfer and on targeting full-encapsulation by any means necessary for many years.This has led to a significant, albeit unintended, consequence in terms of overall roof bolting effectiveness, namely increased resin pressures during bolt installation and the associated potential for opening bedding planes that may have, otherwise, remained closed during the bolt installation process.Given that the natural self-supporting ability of roof strata is strongly linked to whether bedding planes are open or closed, logically, minimising resin pressures should be a significant benefit.This paper focuses primarily on three key issues that relate directly to the function of the roof bolting system itself:(1) the importance of proper resin mixing in the context of maximising load transfer strength and stiffness,(2) the importance of minimising resin pressures developed during bolt installation, and(3) the importance of maximising the effectiveness of the available bolt pre-tension.All mine operators should be invested in improving the individual effectiveness of each installed roof bolt, even by relatively small incremental amounts, so this is an important topic for discussion within the mining community. 展开更多
关键词 ROOF boltS STRATA reinforcement Partial-encapsulation PRE-TENSION Resin mixing Improved bolt effectiveness
下载PDF
Experimental and numerical studies on progressive debonding of grouted rock bolts 被引量:14
18
作者 Hao Shi Lei Song +5 位作者 Houquan Zhang Wenlong Chen Huasheng Lin Danqi Li Guozhu Wang Huayun Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期63-74,共12页
Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The ... Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The experimental pull-out test specimens were prepared using cement mortar material,and a relationship between the pull-out strength of the bolt and the uniaxial compressive strength(UCS)of cement mortar material specimen was established.The locations of crack developed in the pull-out process were identified using the acoustic emission(AE)technique.The pull-out test was reproduced using 2D Particle Flow Code(PFC^(2D))with calibrated parameters.The experimental results show that the axial displacement of the cement mortar material at the peak load during the test was approximately 5 mm for cement-based grout of all strength.In contrast,the peak load of the bolt increased with the UCS of the confining medium.Under peak load,cracks propagated to less than one half of the anchorage length,indicating a lag between crack propagation and axial bolt load transmission.The simulation results show that the dilatation between the bolt and the rock induced cracks and extended the force field along the anchorage direction;and,it was identified as the major contributing factor for the pull-out failure of rock bolt. 展开更多
关键词 bolt pull-out test bolt failure process AE positioning Meso-interaction PFC2D simulation
下载PDF
国外WIRE-ON-BOLT技术分级准则在我国的适用性研究 被引量:2
19
作者 唐其环 万军 张伦武 《装备环境工程》 CAS 2006年第1期85-88,共4页
在万宁近海暴露场和江津暴露场进行了2次WIRE-ON-BOLT大气暴露试验,分别采用铝丝-碳钢螺栓试样和铝丝-铜螺栓试样,并按LAQUE中心和ASTM标准对万宁和江津的大气腐蚀性进行分级,分级结果表明:国外这2种评级准则难以甄别我国各主要大气网... 在万宁近海暴露场和江津暴露场进行了2次WIRE-ON-BOLT大气暴露试验,分别采用铝丝-碳钢螺栓试样和铝丝-铜螺栓试样,并按LAQUE中心和ASTM标准对万宁和江津的大气腐蚀性进行分级,分级结果表明:国外这2种评级准则难以甄别我国各主要大气网站的腐蚀性,有必要对此进行重新划分。 展开更多
关键词 大气腐蚀 电偶腐蚀 Wire-on-bolt 铝丝-碳钢螺栓 铝丝-铜螺栓
下载PDF
Failure mechanism of bolting support and high-strength bolt-grouting technology for deep and soft surrounding rock with high stress 被引量:16
20
作者 李术才 王洪涛 +5 位作者 王琦 江贝 王富奇 郭念波 刘文江 任尧喜 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期440-448,共9页
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i... In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines. 展开更多
关键词 high stress soft rock bolting support interface dilation failure mechanism high strength bolt-grouting technology
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部