Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi...Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.展开更多
Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.Th...Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.展开更多
Diabetes is a disease with a high global burden.Current strategies have failed to limit the advancement and impact of the disease.Successful early diagnosis and treatment will require the development of new agents.In ...Diabetes is a disease with a high global burden.Current strategies have failed to limit the advancement and impact of the disease.Successful early diagnosis and treatment will require the development of new agents.In this sense,boroncontaining compounds have been reported as agents with the ability to reduce glycemia and lipidemia.They have also been used for labeling and measuring carbohydrates and other molecules linked to the initial stages of diabetes and its progression.In addition,certain boron compounds bind to molecules related to diabetes development and their biological activity in the regulation of elevated glycemia.Finally,it should be noted that some boron compounds appear to exert beneficial effects on diabetes complications such as accelerating wound healing while ameliorating pain in diabetic patients.展开更多
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig...Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.展开更多
Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants ...Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l...The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.展开更多
Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide...Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness.展开更多
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s...Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.展开更多
In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is unde...In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is under evaluation as a real-time wall conditioning technique.In the LHD,which is a large-sized heliotron device,an additional helium(He)glow discharge cleaning(GDC)after boronization was operated for a reduction in hydrogen recycling from the coated boron layers.This operational time of 3 h was determined by spectroscopic data during glow discharges.A flat hydrogen profile is obtained on the top surface of the coated boron on the specimen exposed to boronization.The results suggest a reduction in hydrogen at the top surface by He-GDC.Trapped oxygen in coated boron was obtained by boronization,and the coated boron,which has boron-oxide,on the first wall by B-IPD was also shown.Considering the difference in coating areas between B2H6 boronization and B-IPD operation,it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning.展开更多
The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of...The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.展开更多
Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of...Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained.展开更多
In this work,the boron phosphide(BP)was synthesized and used for the adsorptive removal of methylene blue(MB)dye from aqueous solutions.To determine the optimum adsorption conditions,studies were performed by varying ...In this work,the boron phosphide(BP)was synthesized and used for the adsorptive removal of methylene blue(MB)dye from aqueous solutions.To determine the optimum adsorption conditions,studies were performed by varying parameters of temperature(298–328 K),pH(2–12),contact time(0–120 min),adsorbent dose(0.01–0.20 g/50 mL),and dye concentration(10–50 mg/L).Different isotherm and kinetic models were applied to the adsorption data.The linear correlations coefficient showed that the Langmuir isotherm best fits(R^(2)=0.9996).The maximum adsorption capacity of BP was obtained as 555.56 mg/g at 55℃and the removal rate reached up to 84.11%.Additionally,the pseudo-second-order kinetic model described the adsorption process best(R^(2)=0.9998).The thermodynamic studies represented that the adsorption occurred spontaneously(ΔG_(A)^(Θ)=−24.90 kJ/mol)and endothermically(ΔH_(A)^(Θ)=16.67 kJ/mol).The results showed that BP is an efficient adsorbent for removing cationic dyes from aqueous solutions.展开更多
Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced in...Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites.展开更多
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni...Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.展开更多
In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by hea...In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃ in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorption-desorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the Box-Behnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process.展开更多
Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes usi...Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes using molecular dynamics simulations with a machine-learning force field.The results reveal quasi-plastic deformation mechanisms in nB_(4)C:GB sliding,intergranular amorphization and intragranular amorphization.GB sliding arises from the presence of soft GBs,leading to intergranular amorphization.Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs,and finally causes structural failure.Furthermore,nB_(4)C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism.A higher strain rate in nB_(4)C often leads to a higher yield strength,following a 2/3 power relationship.These deformation mechanisms are critical for the design of ceramics with superior mechanical properties.展开更多
The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics,but they are poorly understood ...The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics,but they are poorly understood owing to the challenges of performing experiments and realizing ab initio calculations.Here,we report the first shock Hugoniot data on hexagonal boron nitride at pressures of 5–16 Mbar,using hohlraum-driven shock waves at the SGIII-p laser facility in China.Our density functional theory molecular dynamics calculations closely match experimental data,validating the equations of state for modeling the shock response of boron nitride and filling a crucial gap in the knowledge of boron nitride properties in the region of multi-Mbar pressures and eV temperatures.The results presented here provide fundamental insights into boron nitride under the extreme conditions relevant to inertial confinement fusion,hydrogen–boron fusion,and high-energy-density physics.展开更多
Surface flashover is a crucial issue for the miniaturisation of electronic facilities in military,industrial,and aerospace engineering.The oriented hexagonal boron nitride(hBN)composites,due to excellent thermal and e...Surface flashover is a crucial issue for the miniaturisation of electronic facilities in military,industrial,and aerospace engineering.The oriented hexagonal boron nitride(hBN)composites,due to excellent thermal and electrical insulating properties,show a potential application in high-voltage power equipment,while the surface flashover performance of hBN composites dependent on oriented hBN texture is rarely reported.The effects of hBN orientation and contents on the surface flashover performances of oriented hBN composites are investigated.The isothermal surface potential decay of the oriented hBN composites was also studied.It is found that the charge transportation could be adjusted by the hBN orientation,thus regulating surface flashover strength.The DC flashover voltage of the in-plane oriented hBN composites with a thickness of 15μm reached the maximum of 27.6 kV at the hBN loading of 20 wt%,14.5%higher than that of the pure resin.The carrier mobility of out-of-plane oriented hBN composites is about three times greater than that of the in-plane oriented composites,indicating that the charges are easily transported along the hBN basal plane.The larger carrier mobility causes charge dissipation in composites near the electrode at the hBN basal plane parallel to the axis of electrodes and inhibits the distortion of the surface electric field on the composites,thus enhancing the surface flashover.Consequently,developing oriented insulators for highvoltage applications and enabling an optimum insulation design would be beneficial because of the compactness and high reliability of power apparatus for use in power grids.展开更多
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.
基金supported by the Science and Technology Special Plan Project from China Minmetals Group (No.2020ZXA01)the International Exchange and Growth Program for Young Teachers (No.QNXM20220061)the National Key Research and Development Program of China (No.2022YFC2906100).
文摘Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.
基金Supported by the Secretaría de Investigación y Posgrado,No.M2143,No.M2303,No.20232777,and No.4288/2023.
文摘Diabetes is a disease with a high global burden.Current strategies have failed to limit the advancement and impact of the disease.Successful early diagnosis and treatment will require the development of new agents.In this sense,boroncontaining compounds have been reported as agents with the ability to reduce glycemia and lipidemia.They have also been used for labeling and measuring carbohydrates and other molecules linked to the initial stages of diabetes and its progression.In addition,certain boron compounds bind to molecules related to diabetes development and their biological activity in the regulation of elevated glycemia.Finally,it should be noted that some boron compounds appear to exert beneficial effects on diabetes complications such as accelerating wound healing while ameliorating pain in diabetic patients.
文摘Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success.
基金the Hindustan Institute of Technology and Science for their support.
文摘Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
基金supported by Shaanxi Provincial Natural Science Foundation for Distinguished Young Scholars(2022JC)NSFC(41930863,42173023)The Science and Technology Plan Project of Qinghai Province Incentive Fund 2023。
文摘The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.
基金YOK(MEVLANA 2018-9999-Proj-ect-Based International Exchange Programme)for financial support in inter-national collaboration.
文摘Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness.
基金Project supported by the National Natural Science Foundation of China (Grant No.12074273)the Sichuan Science and Technology Program (Grant No.2022NSFSC1810)。
文摘Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.
基金supported by NIFS budgets,KOBF031,ULFF004,KUHR032partly supported by JSPS KAKENHI 18K04999+2 种基金JSPS-CAS Bilateral Joint Research Projects,“Control of wall recycling on metallic plasma-facing materials in fusion reactor”2019-2022,(No.GJHZ201984)the Chinese Academy of Sciences President’s International Fellowship Initiative Grant No.2024VMB0003 in FY2023the U.S.Department Of Energy under Contract No.DE-AC02-09CH11466 with Princeton University。
文摘In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is under evaluation as a real-time wall conditioning technique.In the LHD,which is a large-sized heliotron device,an additional helium(He)glow discharge cleaning(GDC)after boronization was operated for a reduction in hydrogen recycling from the coated boron layers.This operational time of 3 h was determined by spectroscopic data during glow discharges.A flat hydrogen profile is obtained on the top surface of the coated boron on the specimen exposed to boronization.The results suggest a reduction in hydrogen at the top surface by He-GDC.Trapped oxygen in coated boron was obtained by boronization,and the coated boron,which has boron-oxide,on the first wall by B-IPD was also shown.Considering the difference in coating areas between B2H6 boronization and B-IPD operation,it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning.
基金AP is grateful for the financial support of Science Foundation Ireland(SFI)under grant number 18/SIRG/5621 and Enterprise Ireland under grant number CS20212089DG is grateful to the Australian Research Council(ARC)for a support in the frame of an ARC Laureate project No FL160100089.Open access funding provided by IReL.
文摘The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.
基金Funed by the National Key Research and Development Program of China(No.2021YFA0715700)the Open Fund of Hubei Longzhong Laboratory。
文摘Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained.
文摘In this work,the boron phosphide(BP)was synthesized and used for the adsorptive removal of methylene blue(MB)dye from aqueous solutions.To determine the optimum adsorption conditions,studies were performed by varying parameters of temperature(298–328 K),pH(2–12),contact time(0–120 min),adsorbent dose(0.01–0.20 g/50 mL),and dye concentration(10–50 mg/L).Different isotherm and kinetic models were applied to the adsorption data.The linear correlations coefficient showed that the Langmuir isotherm best fits(R^(2)=0.9996).The maximum adsorption capacity of BP was obtained as 555.56 mg/g at 55℃and the removal rate reached up to 84.11%.Additionally,the pseudo-second-order kinetic model described the adsorption process best(R^(2)=0.9998).The thermodynamic studies represented that the adsorption occurred spontaneously(ΔG_(A)^(Θ)=−24.90 kJ/mol)and endothermically(ΔH_(A)^(Θ)=16.67 kJ/mol).The results showed that BP is an efficient adsorbent for removing cationic dyes from aqueous solutions.
文摘Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites.
基金This work was supported by the National Key Research and Development Project(Nos.2019YFA0705403,2022YFA1205300)the National Natural Science Foundation of China(No.T2293693)+3 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(No.2017ZT07C341)the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004)Zhiyuan Xiong thanks the financial support from South China University of Technology.
文摘Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.
文摘In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃ in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorption-desorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the Box-Behnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process.
基金the support from the National Natural Science Foundation of China (Grant No.11972267)。
文摘Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes using molecular dynamics simulations with a machine-learning force field.The results reveal quasi-plastic deformation mechanisms in nB_(4)C:GB sliding,intergranular amorphization and intragranular amorphization.GB sliding arises from the presence of soft GBs,leading to intergranular amorphization.Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs,and finally causes structural failure.Furthermore,nB_(4)C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism.A higher strain rate in nB_(4)C often leads to a higher yield strength,following a 2/3 power relationship.These deformation mechanisms are critical for the design of ceramics with superior mechanical properties.
文摘The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics,but they are poorly understood owing to the challenges of performing experiments and realizing ab initio calculations.Here,we report the first shock Hugoniot data on hexagonal boron nitride at pressures of 5–16 Mbar,using hohlraum-driven shock waves at the SGIII-p laser facility in China.Our density functional theory molecular dynamics calculations closely match experimental data,validating the equations of state for modeling the shock response of boron nitride and filling a crucial gap in the knowledge of boron nitride properties in the region of multi-Mbar pressures and eV temperatures.The results presented here provide fundamental insights into boron nitride under the extreme conditions relevant to inertial confinement fusion,hydrogen–boron fusion,and high-energy-density physics.
基金Science and Technology Project of SGCC,Grant/Award Number:SGTYHT/14-JS-188National Science Fund of Wuhu,Grant/Award Number:2022hg15“111”Project,Grant/Award Number:BP0820005。
文摘Surface flashover is a crucial issue for the miniaturisation of electronic facilities in military,industrial,and aerospace engineering.The oriented hexagonal boron nitride(hBN)composites,due to excellent thermal and electrical insulating properties,show a potential application in high-voltage power equipment,while the surface flashover performance of hBN composites dependent on oriented hBN texture is rarely reported.The effects of hBN orientation and contents on the surface flashover performances of oriented hBN composites are investigated.The isothermal surface potential decay of the oriented hBN composites was also studied.It is found that the charge transportation could be adjusted by the hBN orientation,thus regulating surface flashover strength.The DC flashover voltage of the in-plane oriented hBN composites with a thickness of 15μm reached the maximum of 27.6 kV at the hBN loading of 20 wt%,14.5%higher than that of the pure resin.The carrier mobility of out-of-plane oriented hBN composites is about three times greater than that of the in-plane oriented composites,indicating that the charges are easily transported along the hBN basal plane.The larger carrier mobility causes charge dissipation in composites near the electrode at the hBN basal plane parallel to the axis of electrodes and inhibits the distortion of the surface electric field on the composites,thus enhancing the surface flashover.Consequently,developing oriented insulators for highvoltage applications and enabling an optimum insulation design would be beneficial because of the compactness and high reliability of power apparatus for use in power grids.