期刊文献+
共找到41,118篇文章
< 1 2 250 >
每页显示 20 50 100
Unraveling the role of dual Ti/Mg metals on the ignition and combustion behavior of HTPB-boron-based fuel 被引量:1
1
作者 Arijit Debnath Yash Pal +1 位作者 Sri Nithya Mahottamananda Djalal Trache 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期134-143,共10页
Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants ... Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance. 展开更多
关键词 boron B_(2)O_(3) Opposed flow burner Combustion magnesium
下载PDF
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion 被引量:2
2
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 magnesium alloy WE43 Laser powder bed fusion Layer thickness Process optimization
下载PDF
Preliminary discussion on the ignition mechanism of exploding foil initiators igniting boron potassium nitrate 被引量:1
3
作者 Haotian Jian Guoqiang Zheng +4 位作者 Lejian Chen Zheng Ning Guofu Yin Peng Zhu Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期222-231,共10页
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig... Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success. 展开更多
关键词 Exploding foil initiator PDV Plasma spectrum Ignition mechanism boron potassium nitrate
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation 被引量:1
4
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber boron nitride Thermal conductivity Electrical insulation
下载PDF
Biomedical rare-earth magnesium alloy:Current status and future prospects 被引量:1
5
作者 Mingli Yang Cheng Chen +5 位作者 Dongsheng Wang Yinjin Shao Wenhao Zhou Cijun Shuai Youwen Yang Xinghai Ning 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1260-1282,共23页
Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit... Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys. 展开更多
关键词 magnesium alloy Rare earth elements Biodegradation behavior Mechanical performance Biological properties
下载PDF
Fabrication and characterization of multi-scale coated boron powders with improved combustion performance:A brief review 被引量:1
6
作者 Rui Liu Danfeng Yang +2 位作者 Kunyu Xiong Ying-Lei Wang Qi-Long Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期27-40,共14页
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic... Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature. 展开更多
关键词 boron powder coating Structure and morphology Condensed phase thermal reaction Ignition and combustion
下载PDF
Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds 被引量:1
7
作者 Qiwei Zhang Yangfan Cheng +2 位作者 Beibei Zhang Danyi Li Zhaowu Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期471-483,共13页
The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the... The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction. 展开更多
关键词 magnesium hydride dust Flame combustion mechanism Particle size Dust explosion Two-color pyrometer
下载PDF
Recent progress in thermodynamic and kinetics modification of magnesium hydride hydrogen storage materials 被引量:1
8
作者 Yafei Liu Yusang Guo +3 位作者 Yaru Jiang Lizhuang Feng Yu Sun Yijing Wang 《Materials Reports(Energy)》 EI 2024年第1期3-22,共20页
Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen... Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials. 展开更多
关键词 magnesium hydride Thermodynamics and kinetics Catalyst doping NANOSTRUCTURES Hydrogenation and dehydrogenation
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis 被引量:1
9
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
Understanding the corrosion and bio-corrosion behaviour of Magnesium composites – a critical review
10
作者 Prithivirajan Sekar S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期890-939,共50页
Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosi... Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosion behaviour of Mg has gained research attention and still remains a hot topic in the application of automobile,aerospace and biomedical industries.The intrinsic high electrochemical nature of Mg limits their utilization in diverse application.This scenario has prompted the development of Mg composites with an aim to achieve superior corrosion and bio-corrosion resistance.The present review enlightens the influence of grain size(GS),secondary phase,texture,type of matrix and reinforcement on the corrosion and bio-corrosion behaviour of Mg composites.Firstly,the corrosion and bio-corrosion behaviour of Mg composites manufactured by primary and secondary processing routes are elucidated.Secondly,the comprehensive corrosion and bio-corrosion mechanisms of these Mg composites are proposed.Thirdly,the individual role of GS,texture and corrosive medium on corrosion and bio-corrosion behaviour of Mg composites are clarified and revealed.The challenges encountered,unanswered issues in this field are explained in detail and accordingly the scope for future research is framed.The review is presented from basic concrete background to advanced corrosion mechanisms with an aim of creating interest among the readers like students,researchers and industry experts from various research backgrounds.Indeed,the corrosion and bio-corrosion behaviour of Mg composites are critically reviewed for the first time to:(i)contribute to the body of knowledge,(ii)foster research and development,(iii)make breakthrough,and(iv)create life changing innovations in the field of Mg composite corrosion. 展开更多
关键词 CORROSION Bio corrosion magnesium alloys magnesium composites magnesium implants.
下载PDF
Recension of boron nitride phase diagram based on high-pressure and high-temperature experiments
11
作者 Ruike Zhang Ruiang Guo +3 位作者 Qian Li Shuaiqi Li Haidong Long Duanwei He 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期450-457,共8页
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi... Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance. 展开更多
关键词 hexagonal boron nitride phase diagram high temperature and high pressure cubic boron nitride phase transition differential thermal analysis
下载PDF
Equation of state for boron nitride along the principal Hugoniot to 16 Mbar
12
作者 Huan Zhang Yutong Yang +21 位作者 Weimin Yang Zanyang Guan Xiaoxi Duan Mengsheng Yang Yonggang Liu Jingxiang Shen Katarzyna Batani Diluka Singappuli Ke Lan Yongsheng Li Wenyi Huo Hao Liu Yulong Li Dong Yang Sanwei Li Zhebin Wang Jiamin Yang Zongqing Zhao Weiyan Zhang Liang Sun Wei Kang Dimitri Batani 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第5期77-86,共10页
The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics,but they are poorly understood ... The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics,but they are poorly understood owing to the challenges of performing experiments and realizing ab initio calculations.Here,we report the first shock Hugoniot data on hexagonal boron nitride at pressures of 5–16 Mbar,using hohlraum-driven shock waves at the SGIII-p laser facility in China.Our density functional theory molecular dynamics calculations closely match experimental data,validating the equations of state for modeling the shock response of boron nitride and filling a crucial gap in the knowledge of boron nitride properties in the region of multi-Mbar pressures and eV temperatures.The results presented here provide fundamental insights into boron nitride under the extreme conditions relevant to inertial confinement fusion,hydrogen–boron fusion,and high-energy-density physics. 展开更多
关键词 boron HUGONIOT EXTREME
下载PDF
Isotherm,kinetic and thermodynamic investigations of boron phosphide to remove methylene blue from aqueous solution
13
作者 YILDIRIM Furkan Murat ISIK Birol UGRASKAN Volkan 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3034-3049,共16页
In this work,the boron phosphide(BP)was synthesized and used for the adsorptive removal of methylene blue(MB)dye from aqueous solutions.To determine the optimum adsorption conditions,studies were performed by varying ... In this work,the boron phosphide(BP)was synthesized and used for the adsorptive removal of methylene blue(MB)dye from aqueous solutions.To determine the optimum adsorption conditions,studies were performed by varying parameters of temperature(298–328 K),pH(2–12),contact time(0–120 min),adsorbent dose(0.01–0.20 g/50 mL),and dye concentration(10–50 mg/L).Different isotherm and kinetic models were applied to the adsorption data.The linear correlations coefficient showed that the Langmuir isotherm best fits(R^(2)=0.9996).The maximum adsorption capacity of BP was obtained as 555.56 mg/g at 55℃and the removal rate reached up to 84.11%.Additionally,the pseudo-second-order kinetic model described the adsorption process best(R^(2)=0.9998).The thermodynamic studies represented that the adsorption occurred spontaneously(ΔG_(A)^(Θ)=−24.90 kJ/mol)and endothermically(ΔH_(A)^(Θ)=16.67 kJ/mol).The results showed that BP is an efficient adsorbent for removing cationic dyes from aqueous solutions. 展开更多
关键词 adsorption boron phosphide methylene blue
下载PDF
The source of lithium in Lakkor Co Salt Lake on Qinghai-Tibet Plateau,China:evidence from hydrochemical characteristics and boron isotope
14
作者 Zheng Yan Li Bin Kai Li +2 位作者 Mao-Yong He Xue Qin Wen Jiang Di Zhou 《Acta Geochimica》 EI CAS CSCD 2024年第5期933-946,共14页
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l... The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits. 展开更多
关键词 LITHIUM Hydrochemical Li-rich Salt lake boron isotope
下载PDF
Wild Nutrition’s Food-Grown® Magnesium Supplementation Increases Sleep Quality and Sleep Duration and Reduces Stress in a Healthy Adult Population: A Double-Blind, Randomised, Placebo-Controlled Study
15
作者 David Briskey Jane Erickson +1 位作者 Chelsie Smith Amanda Rao 《Food and Nutrition Sciences》 CAS 2024年第7期509-523,共15页
Background: Magnesium, an essential mineral crucial for various bodily functions, has been shown to positively influence sleep patterns. This study aimed to evaluate the efficacy of Food-Grown® magnesium in enhan... Background: Magnesium, an essential mineral crucial for various bodily functions, has been shown to positively influence sleep patterns. This study aimed to evaluate the efficacy of Food-Grown® magnesium in enhancing sleep quality and duration, as well as overall well-being. Methods: Eighty participants were randomly assigned to receive either 80 mg of Food-Grown® magnesium or a placebo (microcrystalline cellulose) daily for 8 weeks. Participants completed questionnaires assessing sleep quality, daytime drowsiness, quality of life, anxiety, and stress levels. Additionally, participants maintained daily sleep diaries and wore wrist-worn actigraphy devices. The primary outcome measured was the change in sleep quality and duration. Results: Seventy-one participants fulfilled all study requirements (35 in the active group and 36 in the placebo group). Magnesium supplementation significantly improved reported sleep quality, with the active group showing a 32% increase compared to 16% in the placebo group (p = 0.034). Moreover, magnesium supplementation led to a decrease in reported stress scores at week 8 compared to the placebo group (3.7 ± 2.6 vs. 5.5 ± 3.1, respectively). Both the magnesium and placebo groups exhibited significant increases in reported sleep duration and reductions in time to fall asleep, sleep disturbance, sleep latency, sleep medication usage, and total Pittsburgh Sleep Quality Index score at week 8 compared to baseline. Conclusion: Magnesium supplementation notably enhanced sleep quality and reduced stress levels compared to the placebo group. These findings highlight the potential of magnesium as a beneficial supplement for improving sleep quality and overall well-being. 展开更多
关键词 magnesium Sleep Quality Sleep Duration STRESS Food-Grown
下载PDF
Spark Plasma Sintering of Boron Carbide Using Ti_(3)SiC_(2) as a Sintering Additive
16
作者 Hülya Biçer Mustafa Tuncer +3 位作者 Hasan Göçmez Iurii Bogomol Valerii Kolesnichenko Andrey Ragulya 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期645-650,共6页
Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide... Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness. 展开更多
关键词 reactive sintering SPS boron carbide MAX phase
下载PDF
Advancing sustainability:Magnesium-based solutions for environmental challenges and high-performance technologies in superconductivity
17
作者 Muralidhar Miryala 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1257-1259,共3页
The Journal of Magnesium and Alloys(JMA)is actively dedicated to addressing crucial issues related to energy con-servation,emission reduction,energy crises,and sustainable development[1].Magnesium,recognized as the li... The Journal of Magnesium and Alloys(JMA)is actively dedicated to addressing crucial issues related to energy con-servation,emission reduction,energy crises,and sustainable development[1].Magnesium,recognized as the lightest com-mercial structural metal and a promising energy storage ma-terial,holds immense potential in contributing to strategic objectives such as achieving“carbon neutrality”and the“emission peak”,thus mitigating the ongoing energy cri-sis[2].JMA diligently reports on various research fronts,including magnesium-based structural materials,magnesium batteries,magnesium-based hydrogen storage materials,and magnesium-based superconducting super magnets[3]. 展开更多
关键词 magnesium holds structural
下载PDF
Fuel recycling feedback control via real-time boron powder injection in EAST with full metal wall
18
作者 Zhe WANG Zhen SUN +9 位作者 Guizhong ZUO Kai WU Yao HUANG Wei XU Ming HUANG Zhitai ZHOU Yanhong GUAN Haotian QIU Rajesh MAINGI Jiansheng HU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期41-48,共8页
A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EA... A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices. 展开更多
关键词 fuel recycling feedback control boron powder EAST
下载PDF
Stability and melting behavior of boron phosphide under high pressure
19
作者 梁文嘉 向晓君 +2 位作者 李倩 梁浩 彭放 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期579-584,共6页
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s... Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices. 展开更多
关键词 boron phosphide STABILITY melting curve high pressure
下载PDF
Boron-containing compounds as labels,drugs,and theranostic agents for diabetes and its complications
20
作者 Marvin A Soriano-Ursúa R Ivan Cordova-Chávez +1 位作者 Eunice D Farfan-García George Kabalka 《World Journal of Diabetes》 SCIE 2024年第6期1060-1069,共10页
Diabetes is a disease with a high global burden.Current strategies have failed to limit the advancement and impact of the disease.Successful early diagnosis and treatment will require the development of new agents.In ... Diabetes is a disease with a high global burden.Current strategies have failed to limit the advancement and impact of the disease.Successful early diagnosis and treatment will require the development of new agents.In this sense,boroncontaining compounds have been reported as agents with the ability to reduce glycemia and lipidemia.They have also been used for labeling and measuring carbohydrates and other molecules linked to the initial stages of diabetes and its progression.In addition,certain boron compounds bind to molecules related to diabetes development and their biological activity in the regulation of elevated glycemia.Finally,it should be noted that some boron compounds appear to exert beneficial effects on diabetes complications such as accelerating wound healing while ameliorating pain in diabetic patients. 展开更多
关键词 boron Carbohydrates Metabolism DIABETES boronodipyrromethene
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部