In order to increase the contact area and promote the mass transfer process of gas and liquid,the process of the bubble refine-ment in a metallurgical reactor with mechanical agitation was studied by physical simulati...In order to increase the contact area and promote the mass transfer process of gas and liquid,the process of the bubble refine-ment in a metallurgical reactor with mechanical agitation was studied by physical simulation.Based on the capillary number,a prediction equation for the bubble refinement was established.The effects of the gas flow rate,the stirring speed and thestirring depth on the bubble refinement in the reactor were discussed in detail.The distribution of the bubble diameter in thereactor was obtained under different conditions.The results show that when the stirring speed reaches 300 r/min,the bubblediamcter mainly distributes in the range of 1-2 mm.A higher gas flow rate may increase the number of bubbles in the meltand promote the bubble refinement process.The mechanism of bubble refinement under mechanical agitation was analyzed.and the results indicated that the stirring speed.,the blade area and the blade inclination are the main influencing factors.展开更多
基金supported by the National Natural Science Foundation of China(U1508217,U1702253 and 51774078)the Fundamental Research Funds for the Central Universities(N172506009 and N170908001).
文摘In order to increase the contact area and promote the mass transfer process of gas and liquid,the process of the bubble refine-ment in a metallurgical reactor with mechanical agitation was studied by physical simulation.Based on the capillary number,a prediction equation for the bubble refinement was established.The effects of the gas flow rate,the stirring speed and thestirring depth on the bubble refinement in the reactor were discussed in detail.The distribution of the bubble diameter in thereactor was obtained under different conditions.The results show that when the stirring speed reaches 300 r/min,the bubblediamcter mainly distributes in the range of 1-2 mm.A higher gas flow rate may increase the number of bubbles in the meltand promote the bubble refinement process.The mechanism of bubble refinement under mechanical agitation was analyzed.and the results indicated that the stirring speed.,the blade area and the blade inclination are the main influencing factors.