A transparent gel-like mesoporous silicoaluminophosphate material (SAP) with molar ratio of Si/Al = 20 was synthesized by hydrothermal method. The physicochemical features of SAP were characterized by XRD, XRF, BET,...A transparent gel-like mesoporous silicoaluminophosphate material (SAP) with molar ratio of Si/Al = 20 was synthesized by hydrothermal method. The physicochemical features of SAP were characterized by XRD, XRF, BET, SEM and FT-IR spectroscopy of pyridine adsorption techniques. The results indicated that incorporation of phosphorus (P) into aluminasilica system altered the basic textural characteristics of aluminasilica. Especially after hydrothermal treatment, the material with large special surface area (up to 492 m2/g) exhibited a good performance on hydrothermal stability. Moreover, the phosphorus modifier can not only increase the amount of Br/"{o}nsted acidic sites (up to 48.44 μmol/g) and the percentage of weak acidic sites in total acidic sites, but also regulate the acid type, such as the ratio of B/L (Lewis acid/Br?nsted acid) increased to 1.15. The performances of samples as matrices for the catalytic cracking of heavy VGO were investigated. At 520 ℃, the catalysts showed much higher gasoline and diesel oil yields achieving to 45.59 wt% and 19.20 wt%, respectively, and lower coke selectivity (2.86%) than conventional FCC matrices, such as kaolin and amorphous silica-alumina.展开更多
The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NM...The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NMR, FT-IR and TG–DTG. The results demonstrated that [CyN_(1,1)PrSO_3H][p-TSA] was more efficient than the other ionic liquids and chosen as catalyst for further research. The influences of various reaction parameters on the conversion of palm oil to biodiesel were performed, and the orthogonal test was investigated to seek the optimum reaction conditions, which were illustrated as follows: methanol to oil mole ratio of 24:1, catalyst dosage of 3.0 wt% of oil, reaction temperature of 120 °C, reaction time of 150 min, and the biodiesel yield achieved 98.4%. In addition, kinetic study was established for the conversion process, with activation energy and preexponential factor of 122.93 k J·mol^(-1) and 1.83 × 10^(15), respectively. Meanwhile, seven-time recycling runs of ionic liquid were completed with ignorable loss of its catalyst activity. The refined biodiesel met the biodiesel standard EN 14214.展开更多
BrФnsted acidic ionic liquids based on imidazolium cation were employed as a series of environmentally benign catalysts and mediums in the alcoholysis of acetonitrile to synthesize ester. The results showed that BrФ...BrФnsted acidic ionic liquids based on imidazolium cation were employed as a series of environmentally benign catalysts and mediums in the alcoholysis of acetonitrile to synthesize ester. The results showed that BrФnsted acidic ionic liquid [HSO3- pmim]HSO4 was an efficient catalyst and medium for the alcoholysis of acetonitrile which could be recycled easily without obvious decline in catalytic activity, the highest yield could reach 85%.展开更多
Fructone (2-methyl-2-ethylacetoacetate-1, 3-dioxolane), a flavouring material, has been synthesized from ethyl acetoacetate and glycol using five water-soluble Brφnsted acid ionic liquids as catalysts for the first...Fructone (2-methyl-2-ethylacetoacetate-1, 3-dioxolane), a flavouring material, has been synthesized from ethyl acetoacetate and glycol using five water-soluble Brφnsted acid ionic liquids as catalysts for the first time. The used Brφnsted acid ionic liquids include [Hmim]Tfa, [Hmim]Tsa, [Hmim]BF4, [Bmim]HSO4, [Bmim]H2P04, and [Hmim]BF4 showed the highest catalytic activity for the preparation of fructone. After reaction, the product could be isolated from the reaction system automatically, and the ionic liquid could be directly reused without dehydration.展开更多
Lignin is an abundant renewable macromolecular material in nature,and degradation of lignin to improve its hydroxyl content is the key to its efficient use.Alkali lignin(AL)was treated with Brønsted acidic deep e...Lignin is an abundant renewable macromolecular material in nature,and degradation of lignin to improve its hydroxyl content is the key to its efficient use.Alkali lignin(AL)was treated with Brønsted acidic deep eutectic solvent(DES)based on choline chloride and p-toluenesulfonic acid at mild reaction temperature,the structure of the lignin before and after degradation,as well as the composition of small molecules of lignin were analyzed in order to investigate the chemical structure changes of lignin with DES treatment,and the degradation mechanism of lignin in this acidic DES was elucidated in this work.FTIR and NMR analyses demonstrated the selective cleavage of the lignin ether linkages in the degradation process,which was in line with the increased content of phenolic hydroxyl species.XPS revealed that the O/C atomic ratio of the regenerated lignin was lower than that of the AL sample,revealing that the lignin underwent decarbonylation during the DES treatment.Regenerated lignin with low molecular weight and narrow polydispersity index was obtained,and the average molecular weight(Mw)decreased from 17680 g/mol to 2792 g/mol(130°C,3 h)according to GPC analysis.The lignin-degraded products were mainly G-type phenolics and ketones,and small number of aldehydes were also generated,the possible degradation pathway of lignin in this acidic DES was proposed.展开更多
An efficient metal-free strategy for the synthesis of pharmaceutically relevant benzo[α]carbazoles from the derivatives of readily available 2-phenylindole and bio-renewable acetol in an aqueous biphasic system was d...An efficient metal-free strategy for the synthesis of pharmaceutically relevant benzo[α]carbazoles from the derivatives of readily available 2-phenylindole and bio-renewable acetol in an aqueous biphasic system was developed. This protocol employed a sulfone-containing Bronsted acidic ionic liquid as the catalyst, which could be used for five times without a noticeable decrease in its activity and selectivity. Various substituted 2-phenylindoles and α-hydroxyketones participated in the reaction smoothly, with water as the sole byproduct. Mechanistically, the reaction involved the conventional carbon-nucleophile-induced Heyns-type rearrangement and downstream intramolecular olefination.展开更多
A novel BrФnsted acidic ionic liquid(IL) based on the cyclic guanidinium cation has been synthesized. This IL, as a strong BrФnsted acid catalyst or solvent, shows high catalytic activity and biphsaic behavor in t...A novel BrФnsted acidic ionic liquid(IL) based on the cyclic guanidinium cation has been synthesized. This IL, as a strong BrФnsted acid catalyst or solvent, shows high catalytic activity and biphsaic behavor in the esterifications of carboxylic acids and alcohols. The produced esters as a separate phase can be conveniently decanted out from the IL and the IL is recyclable without any loss of catalytic activity.展开更多
As is known to all, nitrogen not only plays an important role in the industrial development of human society but also plays an important part in the proteins that constitute the essence of life[1]. In 1910, the Haber-...As is known to all, nitrogen not only plays an important role in the industrial development of human society but also plays an important part in the proteins that constitute the essence of life[1]. In 1910, the Haber-Bosch process was first used to synthesize ammonia.展开更多
基金supported by the National Program on Key Basic Research Project(973Program)(Grant No.2012CB215000)the Fundamental Research Funds for the Central Universities(Grant No.12CX04038A)the Graduate Student Innovation Foundation of China University of Petroleum(Grant No.CX-1211)
文摘A transparent gel-like mesoporous silicoaluminophosphate material (SAP) with molar ratio of Si/Al = 20 was synthesized by hydrothermal method. The physicochemical features of SAP were characterized by XRD, XRF, BET, SEM and FT-IR spectroscopy of pyridine adsorption techniques. The results indicated that incorporation of phosphorus (P) into aluminasilica system altered the basic textural characteristics of aluminasilica. Especially after hydrothermal treatment, the material with large special surface area (up to 492 m2/g) exhibited a good performance on hydrothermal stability. Moreover, the phosphorus modifier can not only increase the amount of Br/"{o}nsted acidic sites (up to 48.44 μmol/g) and the percentage of weak acidic sites in total acidic sites, but also regulate the acid type, such as the ratio of B/L (Lewis acid/Br?nsted acid) increased to 1.15. The performances of samples as matrices for the catalytic cracking of heavy VGO were investigated. At 520 ℃, the catalysts showed much higher gasoline and diesel oil yields achieving to 45.59 wt% and 19.20 wt%, respectively, and lower coke selectivity (2.86%) than conventional FCC matrices, such as kaolin and amorphous silica-alumina.
基金Supported by the National Natural Science Foundation of China(21576053)the Natural Science Foundation of Fujian Province(2016J01689)the Young Teacher Education Research Foundation of Fujian Province(JAT160056)
文摘The transesterification of palm oil and methanol catalyzed by Br?nsted acidic ionic liquids was investigated. Four eco-friendly Br?nsted acidic ionic liquids were prepared and their structures were characterized by NMR, FT-IR and TG–DTG. The results demonstrated that [CyN_(1,1)PrSO_3H][p-TSA] was more efficient than the other ionic liquids and chosen as catalyst for further research. The influences of various reaction parameters on the conversion of palm oil to biodiesel were performed, and the orthogonal test was investigated to seek the optimum reaction conditions, which were illustrated as follows: methanol to oil mole ratio of 24:1, catalyst dosage of 3.0 wt% of oil, reaction temperature of 120 °C, reaction time of 150 min, and the biodiesel yield achieved 98.4%. In addition, kinetic study was established for the conversion process, with activation energy and preexponential factor of 122.93 k J·mol^(-1) and 1.83 × 10^(15), respectively. Meanwhile, seven-time recycling runs of ionic liquid were completed with ignorable loss of its catalyst activity. The refined biodiesel met the biodiesel standard EN 14214.
基金the Key Project of Chinese Ministry of Education(No.105075)
文摘BrФnsted acidic ionic liquids based on imidazolium cation were employed as a series of environmentally benign catalysts and mediums in the alcoholysis of acetonitrile to synthesize ester. The results showed that BrФnsted acidic ionic liquid [HSO3- pmim]HSO4 was an efficient catalyst and medium for the alcoholysis of acetonitrile which could be recycled easily without obvious decline in catalytic activity, the highest yield could reach 85%.
基金This work was financially supported by the Key Project of Chinese Ministry of Education(No.105075)National Natural Science Foundation of China(No.20503016).
文摘Fructone (2-methyl-2-ethylacetoacetate-1, 3-dioxolane), a flavouring material, has been synthesized from ethyl acetoacetate and glycol using five water-soluble Brφnsted acid ionic liquids as catalysts for the first time. The used Brφnsted acid ionic liquids include [Hmim]Tfa, [Hmim]Tsa, [Hmim]BF4, [Bmim]HSO4, [Bmim]H2P04, and [Hmim]BF4 showed the highest catalytic activity for the preparation of fructone. After reaction, the product could be isolated from the reaction system automatically, and the ionic liquid could be directly reused without dehydration.
基金This project was supported by the Forestry Department Foundation of Guizhou Province of China(No.[2018]13)Natural Science Foundation of Guizhou Province(Nos.Qiankehe[2020]1Y125,[2019]1170)+2 种基金the Scientific and Technological Research Project of Guizhou Province(Nos.Qiankehe NY[2019]2325,[2019]2308)Education Department Foundation of Guizhou Province of China(Nos.QianJiaoHe KY Zi[2017]003,[2017]136)the Science and Technology Plan of Guizhou Province(No.Qiankehe Platform Talent[2017]5788).
文摘Lignin is an abundant renewable macromolecular material in nature,and degradation of lignin to improve its hydroxyl content is the key to its efficient use.Alkali lignin(AL)was treated with Brønsted acidic deep eutectic solvent(DES)based on choline chloride and p-toluenesulfonic acid at mild reaction temperature,the structure of the lignin before and after degradation,as well as the composition of small molecules of lignin were analyzed in order to investigate the chemical structure changes of lignin with DES treatment,and the degradation mechanism of lignin in this acidic DES was elucidated in this work.FTIR and NMR analyses demonstrated the selective cleavage of the lignin ether linkages in the degradation process,which was in line with the increased content of phenolic hydroxyl species.XPS revealed that the O/C atomic ratio of the regenerated lignin was lower than that of the AL sample,revealing that the lignin underwent decarbonylation during the DES treatment.Regenerated lignin with low molecular weight and narrow polydispersity index was obtained,and the average molecular weight(Mw)decreased from 17680 g/mol to 2792 g/mol(130°C,3 h)according to GPC analysis.The lignin-degraded products were mainly G-type phenolics and ketones,and small number of aldehydes were also generated,the possible degradation pathway of lignin in this acidic DES was proposed.
基金supported by the National Natural Science Foundation of China(21761132014,21872060)the Fundamental Research Funds for the Central Universities of China(2016YXZD033)+1 种基金the Fundamental Research Funds for the Central Universities(2019kfyXJJS072)Opening fund of Hubei Key Laboratory of Material Chemistry and Service Failure(2017MCF01K)~~
文摘An efficient metal-free strategy for the synthesis of pharmaceutically relevant benzo[α]carbazoles from the derivatives of readily available 2-phenylindole and bio-renewable acetol in an aqueous biphasic system was developed. This protocol employed a sulfone-containing Bronsted acidic ionic liquid as the catalyst, which could be used for five times without a noticeable decrease in its activity and selectivity. Various substituted 2-phenylindoles and α-hydroxyketones participated in the reaction smoothly, with water as the sole byproduct. Mechanistically, the reaction involved the conventional carbon-nucleophile-induced Heyns-type rearrangement and downstream intramolecular olefination.
文摘A novel BrФnsted acidic ionic liquid(IL) based on the cyclic guanidinium cation has been synthesized. This IL, as a strong BrФnsted acid catalyst or solvent, shows high catalytic activity and biphsaic behavor in the esterifications of carboxylic acids and alcohols. The produced esters as a separate phase can be conveniently decanted out from the IL and the IL is recyclable without any loss of catalytic activity.
基金supported by the National Key R&D Program of China(2017YFA0208300 and 2017YFA0700104)the National Natural Science Foundation of China(21671180 and 21406184)+2 种基金the Chengdu International Science and Technology Cooperation Fund(2020GH0200069HZ)the funding support from CAS Fujian Institute of Innovationfinancially supported by the DNL Cooperation Fund(DNL201918)。
文摘As is known to all, nitrogen not only plays an important role in the industrial development of human society but also plays an important part in the proteins that constitute the essence of life[1]. In 1910, the Haber-Bosch process was first used to synthesize ammonia.