Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the...Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.展开更多
In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for...In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for this problem, the frequency resolution and accuracy are not high enough so that the reliability of BRB fault detection is a ected. Thus, a new multiple signal classification(MUSIC) algorithm based on particle swarm intelligence search is developed. Since spectrum peak search in MUSIC is a multimodal optimization problem, an improved bare?bones particle swarm optimization algorithm(IBPSO) is proposed first. In the IBPSO, a modified strategy of subpopulation determination is introduced into BPSO for realizing multimodal search. And then, the new MUSIC algorithm, called IBPSO?based MUSIC, is proposed by replacing the fixed?step traversal search with IBPSO. Meanwhile, a simulation signal is used to test the e ectiveness of the proposed algorithm. The simulation results show that its frequency precision reaches 10-5, and the computational cost is only comparable to that of traditional MUSIC with 0.1 search step. Finally, the IBPSO?based MUSIC is applied in BRB fault detection of an induction motor, and the e ectiveness and superiority are proved again. The proposed research provides a modified MUSIC algorithm which has su cient frequency precision to detect BRB fault in induction motors.展开更多
Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise f...Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise from the stator current signal that arises when rotor bars break. Then a Hilbert Transform is used to extract the envelope from the filtered signal. With the EMD method again,the frequency band containing the fault characteris-tic-frequency components,2sf,can be extracted from the signal's envelope. The last step is to use a Fast Fourier Trans-form (FFT) method to extract the fault characteristic frequency. This frequency can be detected in actual data from a faulty motor,as shown by example. Compared to the Extend Park Vector method this method is proved to be more sen-sitive under light motor load.展开更多
A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular techn...A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components.展开更多
供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免...供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免于供电电压闪变影响的异步电动机转子故障在线检测方法,首先,根据转子故障主特征频率分量预判转子健康或故障;继而,根据转子故障独有的辅助特征频率分量进一步确认转子健康或故障。仿真与实验结果证明了该方法的有效性。展开更多
针对电机电流信号特征分析(motor current signature analysis,MCSA)诊断早期转子断条故障时存在的频谱泄露阻碍故障特征频率识别的问题,提出一种基于定子电流Morlet小波解调制信号分析的故障诊断方法。首先选择合适的参数对Morlet小波...针对电机电流信号特征分析(motor current signature analysis,MCSA)诊断早期转子断条故障时存在的频谱泄露阻碍故障特征频率识别的问题,提出一种基于定子电流Morlet小波解调制信号分析的故障诊断方法。首先选择合适的参数对Morlet小波性能进行优化,继而利用优化后的Morlet小波提取鼠笼电机定子电流信号包络线以消除基频和噪声干扰的影响,然后对提取到的包络线作快速傅里叶变换(fast Fourier transform,FFT)分析,并根据FFT频谱中是否存在特征频率成分2sfs判断转子断条故障发生与否。所提方法在电机工频或变频供电方式、不同负载运行状况下都能够消除噪声干扰和频谱泄露影响,因而便于故障特征提取并实现早期转子断条故障诊断。理论分析和实验结果表明了所提方法的正确性和有效性。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51607180)
文摘Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
基金Fundamental Research Funds for the Central Universities(Grant No.2017XKQY032)
文摘In spectrum analysis of induction motor current, the characteristic components of broken rotor bars(BRB) fault are often submerged by the fundamental component. Although many detection methods have been proposed for this problem, the frequency resolution and accuracy are not high enough so that the reliability of BRB fault detection is a ected. Thus, a new multiple signal classification(MUSIC) algorithm based on particle swarm intelligence search is developed. Since spectrum peak search in MUSIC is a multimodal optimization problem, an improved bare?bones particle swarm optimization algorithm(IBPSO) is proposed first. In the IBPSO, a modified strategy of subpopulation determination is introduced into BPSO for realizing multimodal search. And then, the new MUSIC algorithm, called IBPSO?based MUSIC, is proposed by replacing the fixed?step traversal search with IBPSO. Meanwhile, a simulation signal is used to test the e ectiveness of the proposed algorithm. The simulation results show that its frequency precision reaches 10-5, and the computational cost is only comparable to that of traditional MUSIC with 0.1 search step. Finally, the IBPSO?based MUSIC is applied in BRB fault detection of an induction motor, and the e ectiveness and superiority are proved again. The proposed research provides a modified MUSIC algorithm which has su cient frequency precision to detect BRB fault in induction motors.
基金Projects 50504015 supported by the National Natural Science Foundation of ChinaOC4499 by the Science Technology Foundation of China University ofMining & Technology
文摘Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise from the stator current signal that arises when rotor bars break. Then a Hilbert Transform is used to extract the envelope from the filtered signal. With the EMD method again,the frequency band containing the fault characteris-tic-frequency components,2sf,can be extracted from the signal's envelope. The last step is to use a Fast Fourier Trans-form (FFT) method to extract the fault characteristic frequency. This frequency can be detected in actual data from a faulty motor,as shown by example. Compared to the Extend Park Vector method this method is proved to be more sen-sitive under light motor load.
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.2017XKQY032)
文摘A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components.
文摘供电电压闪变可能对异步电动机转子故障在线检测产生不利影响,导致基于定子电流信号分析(motor current signature analysis,MCSA)的转子故障在线检测方法失效。通过理论分析,揭示供电电压闪变恶化转子故障在线检测性能的机制。提出免于供电电压闪变影响的异步电动机转子故障在线检测方法,首先,根据转子故障主特征频率分量预判转子健康或故障;继而,根据转子故障独有的辅助特征频率分量进一步确认转子健康或故障。仿真与实验结果证明了该方法的有效性。