The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bu...The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.展开更多
The Neoarchean Bundelkhand greenstone sequences at Mauranipur and Babina areas within the Bundelkhand Gneissic Complex preserve a variety of magmatic rocks such as komatiitic basalts, basalts,felsic volcanic rocks and...The Neoarchean Bundelkhand greenstone sequences at Mauranipur and Babina areas within the Bundelkhand Gneissic Complex preserve a variety of magmatic rocks such as komatiitic basalts, basalts,felsic volcanic rocks and high-Mg andesites belonging to the Baragaon, Raspahari and Koti Formations.The intrusive and extrusive komatiitic basalts are characterized by low SiO_2(39-53 wt.%), high MgO(18-25 wt.%).moderately high Fe_2O_3(7.1-11.6 wt.%), Al_2O_3(4.5-12.0 wt.%), and TiO_2(0.4-1.23 wt.%)with super to subchondritic(Gd/Yb)N ratios indicating garnet control on the melts. The intrusive komatiitic suite of Ti-enriched and Al-depleted type possesses predominant negative Eu and positive Nb, Ti and Y anomalies. The chemical composition of basalts classifies them into three types with varying SiO_2, TiO_2, MgO, Fe_2O_3, Al_2O_3 and CaO. At similar SiO_2 content of type Ⅰ and Ⅲ basalts, the type II basalts show slightly high Al_2O_3 and Fe_2O_3 contents. Significant negative anomalies of Nb, Zr, Hf and Ti, slightly enriched LREE with relatively flat HREE and low ∑REE contents are observed in type Ⅰ and Ⅱ basalts. TypeⅢ basalts show high Zr/Nb ratios(9.8-10.4), TiO_2(1.97-2.04 wt.%), but possess strikingly flat Zr, Hf, Y and Yb and are uncontaminated. Andesites from Agar and Koti have high SiO_2(55-64 wt.%), moderate TiO_2(0.4-0.7 wt.%), slightly low Al_2O_3(7-11.9 wt.%), medium to high MgO(3-8 wt.%) and CaO contents(10-17 wt.%). Anomalously high Cr, Co and Ni contents are observed in the Koti rhyolites. Tholeiitic to calc alkaline affinity of mafic-felsic volcanic rocks and basalt-andesite dacite-rhyolite differentiation indicate a mature arc and thickened crust during the advanced stage of the evolution of Neoarchean Bundelkhand greenstone belt in a convergent tectonic setting where the melts were derived from partial melting of thick basaltic crust metamorphosed to amphibolite-eclogite facies. The trace element systematics suggest the presence of arc-back arc association with varying magnitudes of crust-mantle interaction. La/Sm, La/Ta,Nb/Th, high MgO contents(>20 wt.%), CaO/Al_2O_3 and(Gd/Yb)_N > 1 along with the positive Nb anomalies of the komatiite basalts reflect a mantle plume source for their origin contaminated by subductionmetasomatized mantle lithosphere. The overall geochemical signatures of the ultramafic-mafic and felsic volcanic rocks endorse the Neoarchean plume-arc accretion tectonics in the Bundelkhand greenstone belt.展开更多
The amphibolites from the Mauranipur and Babina regions are located in the central part of the Bundelkhand Craton(BuC),northern India.During the geodynamic evolution of the BuC,these amphibolites underwent medium-grad...The amphibolites from the Mauranipur and Babina regions are located in the central part of the Bundelkhand Craton(BuC),northern India.During the geodynamic evolution of the BuC,these amphibolites underwent medium-grade metamorphism.This study combines textural observations of amphibolites from two distinct regions(Mauranipur and Babina)with mineral chemistry and phase equilibrium modelling.Observations suggest that the amphibolites of both areas have gone through three stages of metamorphism.The pre-peak stage in the amphibolites from the Mauranipur and Babina regions is marked by the assemblages Ep-Amp-Cpx-Pl-Ilm-Ru-Qz and Ep-Amp-Cpx-Pl-Ab-Ilm-Qz respectively;the peak metamorphic stage is characterized by the mineral assemblages Amp-Cpx-Pl-Ilm-Ru-Qz and Amp-Cpx-Pl-Ilm-Qz-H_(2)O,which is formed during the burial process,and the post-peak stage is represented by the assemblages Amp-Pl-Ilm-Ru-Qz and Amp-Pl-Ilm-Qz-H_(2)O respectively,which is formed by exhumation event.By applying the phase equilibria modelling in the NCFMASHTO system,the P-T conditions estimated from pre-peak,peak to post-peak stages are characterized as 6.7 kbar/510 oC,7.3 kbar/578ºC and>3.0 kbar/>585ºC,respectively,for the Mauranipur amphibolites;and 6.27 kbar/520ºC,5.2 kbar/805ºC and>3.0 kbar/>640ºC respectively for Babina amphibolites.The textural association and P-T conditions of both amphibolites suggest that these rocks were affected by burial metamorphism followed by an exhumation process during subduction tectonism in the BuC.展开更多
The study is an attempt to design a watershed scorecard by identifying and evaluating selected set of indicators,such as surface water quality,ground water quality,soil condition,agriculture condition,and forest condi...The study is an attempt to design a watershed scorecard by identifying and evaluating selected set of indicators,such as surface water quality,ground water quality,soil condition,agriculture condition,and forest condition,which accurately reflect the health of the watershed.Ur River Watershed in Tikamgarh District,Madhya Pradesh was taken as a case study to assess the watershed health.Evaluation was done by calculating different indices for the selected set of indicators and comparing them with the National standards and guidelines.Based on the performance of each indicator,the grades were assigned to the indicators which helped in designing the watershed scorecard.The results revealed that within the watershed,the forest and soil conditions need a considerable plan for improvement in order to maintain the ecosystem whereas the surface water quality,groundwater quality and the agricultural conditions requires protection as well as enhancement in certain areas.展开更多
文摘The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas.
基金the funds from Council of Scientific and Industrial Research (CSIR)Ministry of Earth Sciences, Government of India for the financial support(MoES/P.O.(Geosci)/4/2013)
文摘The Neoarchean Bundelkhand greenstone sequences at Mauranipur and Babina areas within the Bundelkhand Gneissic Complex preserve a variety of magmatic rocks such as komatiitic basalts, basalts,felsic volcanic rocks and high-Mg andesites belonging to the Baragaon, Raspahari and Koti Formations.The intrusive and extrusive komatiitic basalts are characterized by low SiO_2(39-53 wt.%), high MgO(18-25 wt.%).moderately high Fe_2O_3(7.1-11.6 wt.%), Al_2O_3(4.5-12.0 wt.%), and TiO_2(0.4-1.23 wt.%)with super to subchondritic(Gd/Yb)N ratios indicating garnet control on the melts. The intrusive komatiitic suite of Ti-enriched and Al-depleted type possesses predominant negative Eu and positive Nb, Ti and Y anomalies. The chemical composition of basalts classifies them into three types with varying SiO_2, TiO_2, MgO, Fe_2O_3, Al_2O_3 and CaO. At similar SiO_2 content of type Ⅰ and Ⅲ basalts, the type II basalts show slightly high Al_2O_3 and Fe_2O_3 contents. Significant negative anomalies of Nb, Zr, Hf and Ti, slightly enriched LREE with relatively flat HREE and low ∑REE contents are observed in type Ⅰ and Ⅱ basalts. TypeⅢ basalts show high Zr/Nb ratios(9.8-10.4), TiO_2(1.97-2.04 wt.%), but possess strikingly flat Zr, Hf, Y and Yb and are uncontaminated. Andesites from Agar and Koti have high SiO_2(55-64 wt.%), moderate TiO_2(0.4-0.7 wt.%), slightly low Al_2O_3(7-11.9 wt.%), medium to high MgO(3-8 wt.%) and CaO contents(10-17 wt.%). Anomalously high Cr, Co and Ni contents are observed in the Koti rhyolites. Tholeiitic to calc alkaline affinity of mafic-felsic volcanic rocks and basalt-andesite dacite-rhyolite differentiation indicate a mature arc and thickened crust during the advanced stage of the evolution of Neoarchean Bundelkhand greenstone belt in a convergent tectonic setting where the melts were derived from partial melting of thick basaltic crust metamorphosed to amphibolite-eclogite facies. The trace element systematics suggest the presence of arc-back arc association with varying magnitudes of crust-mantle interaction. La/Sm, La/Ta,Nb/Th, high MgO contents(>20 wt.%), CaO/Al_2O_3 and(Gd/Yb)_N > 1 along with the positive Nb anomalies of the komatiite basalts reflect a mantle plume source for their origin contaminated by subductionmetasomatized mantle lithosphere. The overall geochemical signatures of the ultramafic-mafic and felsic volcanic rocks endorse the Neoarchean plume-arc accretion tectonics in the Bundelkhand greenstone belt.
文摘The amphibolites from the Mauranipur and Babina regions are located in the central part of the Bundelkhand Craton(BuC),northern India.During the geodynamic evolution of the BuC,these amphibolites underwent medium-grade metamorphism.This study combines textural observations of amphibolites from two distinct regions(Mauranipur and Babina)with mineral chemistry and phase equilibrium modelling.Observations suggest that the amphibolites of both areas have gone through three stages of metamorphism.The pre-peak stage in the amphibolites from the Mauranipur and Babina regions is marked by the assemblages Ep-Amp-Cpx-Pl-Ilm-Ru-Qz and Ep-Amp-Cpx-Pl-Ab-Ilm-Qz respectively;the peak metamorphic stage is characterized by the mineral assemblages Amp-Cpx-Pl-Ilm-Ru-Qz and Amp-Cpx-Pl-Ilm-Qz-H_(2)O,which is formed during the burial process,and the post-peak stage is represented by the assemblages Amp-Pl-Ilm-Ru-Qz and Amp-Pl-Ilm-Qz-H_(2)O respectively,which is formed by exhumation event.By applying the phase equilibria modelling in the NCFMASHTO system,the P-T conditions estimated from pre-peak,peak to post-peak stages are characterized as 6.7 kbar/510 oC,7.3 kbar/578ºC and>3.0 kbar/>585ºC,respectively,for the Mauranipur amphibolites;and 6.27 kbar/520ºC,5.2 kbar/805ºC and>3.0 kbar/>640ºC respectively for Babina amphibolites.The textural association and P-T conditions of both amphibolites suggest that these rocks were affected by burial metamorphism followed by an exhumation process during subduction tectonism in the BuC.
文摘The study is an attempt to design a watershed scorecard by identifying and evaluating selected set of indicators,such as surface water quality,ground water quality,soil condition,agriculture condition,and forest condition,which accurately reflect the health of the watershed.Ur River Watershed in Tikamgarh District,Madhya Pradesh was taken as a case study to assess the watershed health.Evaluation was done by calculating different indices for the selected set of indicators and comparing them with the National standards and guidelines.Based on the performance of each indicator,the grades were assigned to the indicators which helped in designing the watershed scorecard.The results revealed that within the watershed,the forest and soil conditions need a considerable plan for improvement in order to maintain the ecosystem whereas the surface water quality,groundwater quality and the agricultural conditions requires protection as well as enhancement in certain areas.