针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立...针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。展开更多
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity...A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.展开更多
Modern shared-memory multi-core processors typically have shared Level 2(L2)or Level 3(L3)caches.Cache bottlenecks and replacement strategies are the main problems of such architectures,where multiple cores try to acc...Modern shared-memory multi-core processors typically have shared Level 2(L2)or Level 3(L3)caches.Cache bottlenecks and replacement strategies are the main problems of such architectures,where multiple cores try to access the shared cache simultaneously.The main problem in improving memory performance is the shared cache architecture and cache replacement.This paper documents the implementation of a Dual-Port Content Addressable Memory(DPCAM)and a modified Near-Far Access Replacement Algorithm(NFRA),which was previously proposed as a shared L2 cache layer in a multi-core processor.Standard Performance Evaluation Corporation(SPEC)Central Processing Unit(CPU)2006 benchmark workloads are used to evaluate the benefit of the shared L2 cache layer.Results show improved performance of the multicore processor’s DPCAM and NFRA algorithms,corresponding to a higher number of concurrent accesses to shared memory.The new architecture significantly increases system throughput and records performance improvements of up to 8.7%on various types of SPEC 2006 benchmarks.The miss rate is also improved by about 13%,with some exceptions in the sphinx3 and bzip2 benchmarks.These results could open a new window for solving the long-standing problems with shared cache in multi-core processors.展开更多
Through caching popular contents at the network edge,wireless edge caching can greatly reduce both the content request latency at mobile devices and the traffic burden at the core network.However,popularity-based cach...Through caching popular contents at the network edge,wireless edge caching can greatly reduce both the content request latency at mobile devices and the traffic burden at the core network.However,popularity-based caching strategies are vulnerable to Cache Pollution Attacks(CPAs)due to the weak security protection at both edge nodes and mobile devices.In CPAs,through initiating a large number of requests for unpopular contents,malicious users can pollute the edge caching space and degrade the caching efficiency.This paper firstly integrates the dynamic nature of content request and mobile devices into the edge caching framework,and introduces an eavesdroppingbased CPA strategy.Then,an edge caching mechanism,which contains a Request Pattern Change-based Cache Pollution Detection(RPC2PD)algorithm and an Attack-aware Cache Defense(ACD)algorithm,is proposed to defend against CPAs.Simulation results show that the proposed mechanism could effectively suppress the effects of CPAs on the caching performance and improve the cache hit ratio.展开更多
At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems ba...At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems based on deep machine learning.The caching model includes program caching,Structured Query Language(SQL)preprocessing,and core caching modules.Among them,the method to improve the efficiency of the statement is to adjust operations such as multi-table joins and replacement keywords in the SQL optimizer.Build predictive models using boosted regression trees in the core caching module.Generate a series of regression tree models using machine learning algorithms.Analyze the resource occupancy rate in the power information system to dynamically adjust the voting selection of the regression tree.At the same time,the voting threshold of the prediction model is dynamically adjusted.By analogy,the cache model is re-initialized.The experimental results show that the model has a good cache hit rate and cache efficiency,and can improve the data cache performance of the power information system.It has a high hit rate and short delay time,and always maintains a good hit rate even under different computer memory;at the same time,it only occupies less space and less CPU during actual operation,which is beneficial to power The information system operates efficiently and quickly.展开更多
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff...Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.展开更多
文摘针对多核处理器性能优化问题,文中深入研究多核处理器上共享Cache的管理策略,提出了基于缓存时间公平性与吞吐率的共享Cache划分算法MT-FTP(Memory Time based Fair and Throughput Partitioning)。以公平性和吞吐率两个评价性指标建立数学模型,并分析了算法的划分流程。仿真实验结果表明,MT-FTP算法在系统吞吐率方面表现较好,其平均IPC(Instructions Per Cycles)值比UCP(Use Case Point)算法高1.3%,比LRU(Least Recently Used)算法高11.6%。MT-FTP算法对应的系统平均公平性比LRU算法的系统平均公平性高17%,比UCP算法的平均公平性高16.5%。该算法实现了共享Cache划分公平性并兼顾了系统的吞吐率。
文摘A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.
文摘Modern shared-memory multi-core processors typically have shared Level 2(L2)or Level 3(L3)caches.Cache bottlenecks and replacement strategies are the main problems of such architectures,where multiple cores try to access the shared cache simultaneously.The main problem in improving memory performance is the shared cache architecture and cache replacement.This paper documents the implementation of a Dual-Port Content Addressable Memory(DPCAM)and a modified Near-Far Access Replacement Algorithm(NFRA),which was previously proposed as a shared L2 cache layer in a multi-core processor.Standard Performance Evaluation Corporation(SPEC)Central Processing Unit(CPU)2006 benchmark workloads are used to evaluate the benefit of the shared L2 cache layer.Results show improved performance of the multicore processor’s DPCAM and NFRA algorithms,corresponding to a higher number of concurrent accesses to shared memory.The new architecture significantly increases system throughput and records performance improvements of up to 8.7%on various types of SPEC 2006 benchmarks.The miss rate is also improved by about 13%,with some exceptions in the sphinx3 and bzip2 benchmarks.These results could open a new window for solving the long-standing problems with shared cache in multi-core processors.
文摘Through caching popular contents at the network edge,wireless edge caching can greatly reduce both the content request latency at mobile devices and the traffic burden at the core network.However,popularity-based caching strategies are vulnerable to Cache Pollution Attacks(CPAs)due to the weak security protection at both edge nodes and mobile devices.In CPAs,through initiating a large number of requests for unpopular contents,malicious users can pollute the edge caching space and degrade the caching efficiency.This paper firstly integrates the dynamic nature of content request and mobile devices into the edge caching framework,and introduces an eavesdroppingbased CPA strategy.Then,an edge caching mechanism,which contains a Request Pattern Change-based Cache Pollution Detection(RPC2PD)algorithm and an Attack-aware Cache Defense(ACD)algorithm,is proposed to defend against CPAs.Simulation results show that the proposed mechanism could effectively suppress the effects of CPAs on the caching performance and improve the cache hit ratio.
文摘At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems based on deep machine learning.The caching model includes program caching,Structured Query Language(SQL)preprocessing,and core caching modules.Among them,the method to improve the efficiency of the statement is to adjust operations such as multi-table joins and replacement keywords in the SQL optimizer.Build predictive models using boosted regression trees in the core caching module.Generate a series of regression tree models using machine learning algorithms.Analyze the resource occupancy rate in the power information system to dynamically adjust the voting selection of the regression tree.At the same time,the voting threshold of the prediction model is dynamically adjusted.By analogy,the cache model is re-initialized.The experimental results show that the model has a good cache hit rate and cache efficiency,and can improve the data cache performance of the power information system.It has a high hit rate and short delay time,and always maintains a good hit rate even under different computer memory;at the same time,it only occupies less space and less CPU during actual operation,which is beneficial to power The information system operates efficiently and quickly.
基金supported by National Natural Science Foundation of China(NSFC)under Grant Number T2350710232.
文摘Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.