Amyloid-β 1-42(Aβ42)plays a pivotal role in Alzheimer disease(AD)pathogenesis. Peripheral clearance of Aβ42 largely affects its level in the brain and affects AD progression. Although nattokinase(NK)degrades Aβ40,...Amyloid-β 1-42(Aβ42)plays a pivotal role in Alzheimer disease(AD)pathogenesis. Peripheral clearance of Aβ42 largely affects its level in the brain and affects AD progression. Although nattokinase(NK)degrades Aβ40, the details of NK's capture of various Aβ species and reduction of plasma Aβ42/Aβ40 are uncharacterized. In this study, the Aβ42/Aβ40-degrading ability of NK was investigated using five Aβs and AD model mice. The C-terminal region of Aβ42/Aβ40(Gly29 to Val40)was primarily required for NK capture, and the integrated conformation in Aβ42/Aβ40 aggregates was a more efficient target for NK catalysis. Further, suspended Aβ42/Aβ40 oligomers were more easily captured by NK than suspended Aβ42/Aβ40 fibrils, while deposited Aβ42/Aβ40 fibrils recruited more NK than deposited Aβ42/Aβ40 oligomers. Although most NK was likely lost during NK uptake and/or entry into the blood, a small fraction of NK showed good plasma Aβ42/Aβ40-degrading efficacy after entering the blood due to NK's stability in the plasma of AD mice for at least 9 days. It was concluded that oral administration of NK is a feasible approach for peripheral Aβ42/Aβ40 clearance. This implies that NK might serve as an anti-Aβ42 agent for the treatment of Aβ42/Aβ40-related diseases such as AD.展开更多
The dectrochemical reduction characteristics of carbon tetrachlofide (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders'...The dectrochemical reduction characteristics of carbon tetrachlofide (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders' iron and the catalyzed Fe-Cu process was discussed. The results showed that CT was reduced directly on the surface of copper rather than by atomic hydrogen produced at the cathode in the catalyzed Fe-Cu process. The reduction was realized largely by atomic hydrogen in Master Builders' iron. The entire CT in 350 ml aqueous solution with 320 mg/L was reduced to trichloromethane and dichloromethane in 2.25 h when 100 g of scrap iron with Fe/Cu ratio of 10:1 (w/w) were used. Moreover, the reduction rate slowed with time. CT could be reduced at acidic, neutral and alkaline pH from solution by Fe-Cu bimetallic media, but the mechanisms were different. The degradation rate was not significantly influenced by pH in the catalyzed Fe-Cu process; in Master Builders' iron it clearly increased with decreasing pH. The kinetics of the reductions followed pseudo-first order in both cases. Furthermore, the reductions under acidic conditions proceeded faster than that under the neutral and alkaline conditions. The catalyzed Fe-Cu process was superior to Master Builders' iron in treating CT-containing water and this advantage was particularly noticeable under alkaline conditions. The reduction was investigated in the cathode (Cu) and anode (Fe) compartments respectively, the results showed that the direct reduction pathway played an important role in the reduction by the catalyzed Fe-Cu process. The catalyzed Fe-Cu process is of practical value.展开更多
The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studie...The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studied in alkaline medium(pH=11). The catalyzed Fe-Cu process was found more effective on degradation of NBCs compared to Master Builder's iron. The reduction rate by the catalyzed Fe-Cu process decreased in the following order: nitrobenzene 〉4-chloro-nitrobenzene ≥m-dinitrobenzene :〉 4-nitrophenol ≥2,4-dinitrotoluene 〉2-nitrophenol. The reduction rate by Master Builder's iron decreased in the following order: m-dinitrobenzene ≥4-chloro-nitrobenzene 〉4-nitrophenol 〉2,4-dinitrotoluene ≈nitrobenzene 〉2-nitrophenol. NBCs were reduced directly on the surface of copper rather than by the hydrogen produced at cathode in the catalyzed Fe-Cu process. The reduction was realized by the hydrogen produced at cathode and Fe(OH)2 in Master Builder's iron, It is an essential difference in reaction mechanisms between these two technologies. For this reason, the reduction by the catalyzed Fe-Cu depended greatly on NBC's electron withdrawing ability.展开更多
Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves ...Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242℃ with subsequent two exothermic decomposition stages at 297,8℃ and 452.8℃ respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.展开更多
The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the ...The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the sintering of ZnS and FeS and used for the pressure acid leaching experiment.The variations in the potential of the pressure leaching system were investigated by using a self-designed potential autoclave.The results showed that compared to the non-iron sphalerite,there was a violent redox reaction between the 25.70%Fe-artificial sphalerite and dissolved oxygen during the process of pressure leaching;and the catalytic mechanism was attributed to the redox couple Fe^3+/Fe^2+,where Fe3+oxidizes the H2S gas film and the reduced Fe2+state is subsequently oxidized by the dissolved oxygen.Furthermore,the effect of temperature,H2SO4 concentration,and oxygen partial pressure on the artificial sphalerite with different iron contents was studied.The sphalerite samples with iron content were observed to dissolve more easily in sulfuric acid compared to the non-iron samples.Moreover,the activation energy of artificial sphalerite was observed to be lower in the sample with 25.70%iron content(22.26 kJ/mol)compared to that with no iron(32.31 kJ/mol);and the apparent reaction orders were obtained with respect to H2SO4 concentration(1.10 and 1.36)and oxygen partial pressure(1.29 and 1.41),respectively.A comprehensive kinetic model was developed on the basis of the experimental data and the fitted leaching ratio plot;and the kinetic equations for the leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation were determined.展开更多
A novel palladium-catalyzed coupling reaction for the preparation of derivatives of stilbazoles was presented. A series of stilbazoles were synthesized firstly by this highly efficient method. From this reaction it wa...A novel palladium-catalyzed coupling reaction for the preparation of derivatives of stilbazoles was presented. A series of stilbazoles were synthesized firstly by this highly efficient method. From this reaction it was found that reaction solvent is one of important factors in this catalytic system.展开更多
The mechanism and related reaction paths in the hydroisomerization of n-pentane were studied by DFT calculations at the B3LYP/6-311++G^** level. Two possible transition states were theoretically predicted and ve...The mechanism and related reaction paths in the hydroisomerization of n-pentane were studied by DFT calculations at the B3LYP/6-311++G^** level. Two possible transition states were theoretically predicted and verified by the vibration frequency analysis as well as the calculations of intrinsic reaction coordinates (IRC). Furthermore, the related reaction barriers were evaluated by single point energy at the MP2/6-311++G^** level with zero point vibration correction of DFT method. Thus, it is concluded that the isomerization might go through two pathways.展开更多
The selective oxidation of 5-hydroxymethylfurfural(HMF),a versatile bio-based platform molecule,leads to the formation of several intriguing and useful downstream chemicals,such as 2,5-diformylfuran(DFF),5-hydroxymeth...The selective oxidation of 5-hydroxymethylfurfural(HMF),a versatile bio-based platform molecule,leads to the formation of several intriguing and useful downstream chemicals,such as 2,5-diformylfuran(DFF),5-hydroxymethyl-2-furancarboxylic acid(HMFCA),formyl 2-furancarboxylic acid(FFCA),2,5-furandicarboxylic acid(FDCA) and furan-2,5-dimethylcarboxylate(FDMC).These products have been extensively employed to fabricate novel polymers,pharmaceuticals,sustainable dyes and many other value-added fine chemicals.The heart of the developed HMF oxidation processes is always the catalyst.In this regard,this review comprehensively summarized the established heterogeneous catalyst design strategy for the selective oxidation of HMF via thermo-catalysis.Particular attention has been focused on the reaction mechanism of HMF oxidation over different catalysts as well as enhancing the catalytic performance of the catalyst through manipulating the properties of the support and fabricating of multi-component metal nano-particles and oxides.The current challenges and possible research directions for the catalytic oxidation of HMF in the future are also discussed.展开更多
Oxidation of alkybenzenes PhCH_2R(R=H, CH_3, C_2H_5 and n-C_3H_7) under 1 atm. of O_2 or air catalyzed by iron(Ⅱ, Ⅲ)-2,2'-bipyridine and 1,10-phenanthroline complexes, affords the aryl-substituted ketones and al...Oxidation of alkybenzenes PhCH_2R(R=H, CH_3, C_2H_5 and n-C_3H_7) under 1 atm. of O_2 or air catalyzed by iron(Ⅱ, Ⅲ)-2,2'-bipyridine and 1,10-phenanthroline complexes, affords the aryl-substituted ketones and alcohols with the conversion of 15.00%~34.58% containing of 97.60%~99.80% ketones and alcohols. The turnover numbers of these catalysts are over 3500 mol-cat. ^(-1)for 3.5 h.展开更多
Unfixed reactive dyes stained on cotton fabric could be removed using Fe-tetra-amido macro-cyclic ligands( TAML) / H_2O_2 catalyzed oxidation system( COS). The colored washing-off wastewater also could be decolorized ...Unfixed reactive dyes stained on cotton fabric could be removed using Fe-tetra-amido macro-cyclic ligands( TAML) / H_2O_2 catalyzed oxidation system( COS). The colored washing-off wastewater also could be decolorized simultaneously in the same system. The decolourization kinetics showed that the decolourization ratio of reactive dyes in water could reach at least 80% at room temperature in 10 min,which followed the law of pseudo-first order reaction kinetics. The effects of the COS washing-off process parameters on the decolourization ratio,chemical oxygen demand( COD) of wastewater,K/S value,color fastness,color difference,and bursting strength were investigated in detail. The results showed that color fastness properties and final shade of fabric treated by COS were very similar to conventional soaping. The reactive dye molecules in wash-off bath were destroyed using the COS,potentially reduced COD which generated during conventional washing-off procedure.展开更多
The kinetics of phase transfer catalyzed (PTC) disproportionation of elemental sulfur was studied in the range of OH<sup>-</sup> concentrationlin the aqueous phase from 0.02 to 0.14 mol/dm<sup>3<...The kinetics of phase transfer catalyzed (PTC) disproportionation of elemental sulfur was studied in the range of OH<sup>-</sup> concentrationlin the aqueous phase from 0.02 to 0.14 mol/dm<sup>3</sup> and temperature from 45 to 70℃. A kinetic expression, R<sub>s</sub>a=k*[Q<sup>+</sup>]<sub>aq</sub>[OH<sup>-</sup>]<sub>aq</sub>[S]<sub>org</sub><sup>1/2</sup>, derived from the theory of mass transfer with rapid chemical reaction in liquid liquid system can be adopted to correlate the experimental data, and the apparent activation energy of the reaction was found to be 79kJ/mol. Kinetic evidence for PTC reaction of the system was given and a mechanism of PTC disproportionation of elemental sulfur was proposed.展开更多
The Diels-Alder reaction of myrcene and acrolein catalyzed by modified HY zeolitewhich was prepared by mixing HY zeolite and anhydrous ZnCl2 under microwave irradiation wasStudied. High regioselectivity and good yield...The Diels-Alder reaction of myrcene and acrolein catalyzed by modified HY zeolitewhich was prepared by mixing HY zeolite and anhydrous ZnCl2 under microwave irradiation wasStudied. High regioselectivity and good yield of para myrac aldehyde were obtained when the ratio ofZnCl2/HY (w/w) was 1:2 to 1:3.展开更多
The exoellent enantioselectivity with o. p. >99% in asymmetrio borane reduction of acetophenone catalyzed by (4S, 5R ) 4, 5-diphenyi-1. 3. 2-oxazaborolidine has been achieved via the important modincation of the ...The exoellent enantioselectivity with o. p. >99% in asymmetrio borane reduction of acetophenone catalyzed by (4S, 5R ) 4, 5-diphenyi-1. 3. 2-oxazaborolidine has been achieved via the important modincation of the reaction conditions.展开更多
Enzyme catalyzed esterifcation in organic solvent system depends highly oh conjugated salt pair at different PH. We ha,e shown that the addition of an appropriate sol id conjugated salt pair to the esterification rect...Enzyme catalyzed esterifcation in organic solvent system depends highly oh conjugated salt pair at different PH. We ha,e shown that the addition of an appropriate sol id conjugated salt pair to the esterification rection mixtues is a simple and convenient method to obtain optimal pH level con ditions throughout the reaction.展开更多
β-Bromovinyl tellurides are new difuctional reagents which undergo palladium-catalyzed cross-coupling reaction with alkenes to give conjugated dienyl tellurides.
A variety of β-enamino ketones were synthesized in high to excellent yields by reacting acetylacetone with amines in the presence of a catalytic amount of cerium(IV) ammonium nitrate (CAN) under ultrasonic irradi...A variety of β-enamino ketones were synthesized in high to excellent yields by reacting acetylacetone with amines in the presence of a catalytic amount of cerium(IV) ammonium nitrate (CAN) under ultrasonic irradiation.展开更多
An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with...An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with theconstant rate kernels In(n = 1,2, 3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k, j) = Kkj^v, and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k, j) = Lkj^v, whcre v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species ak (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (i) In the v 〈 0 case, the irreversible aggregation dominates the process, and ak(t) satisfies the conventional scaling form; (2) In the v ≥ 0 casc, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, ak(t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely.展开更多
The electrochemi luminescence <ecl> of a new reagent 6-<2-hydroxy-4-diethylaminophenylazo>-2, 3-dihydro-1, 4-phthatazine-1, 4-dione <HDEA> in basic aqueous solution was studied. Trace amount of silve...The electrochemi luminescence <ecl> of a new reagent 6-<2-hydroxy-4-diethylaminophenylazo>-2, 3-dihydro-1, 4-phthatazine-1, 4-dione <HDEA> in basic aqueous solution was studied. Trace amount of silver showed significant effect on the efficiency of light emission of HDEA during a positive trigonometrical wave pulse was exerted on the electrodes In the present paper, the ecl spectra of HDEA have been measured. λ_(max) is 410 nm. The reaction of HDEA chemiluminescence and the circular voltammetry, ultraviolet-visible spectrometry for the system have been investigated. The possible mechanism of the ecl of HDEA-KCL-KOH-Ag(I) system has been proposed.展开更多
Treatment of 11-isopropylidene-anti-4, 5-epoxy-endo-tricyclo[6. 2. 1. 02.7] undeca-4, 9-diene-3,6-dione(6) with methanolic sodium hydroxide results in Favorskii-type ring contraction with concomitant Cope rearrangemen...Treatment of 11-isopropylidene-anti-4, 5-epoxy-endo-tricyclo[6. 2. 1. 02.7] undeca-4, 9-diene-3,6-dione(6) with methanolic sodium hydroxide results in Favorskii-type ring contraction with concomitant Cope rearrangement and Haller-Bauer cleavage, thereby affording dimethyl9-isopropxlidene-cis-bicyclo[4. 3. 0 ] nonane-(2S)-2, 3-dicarboxylate(7) as the ultimate product. The structure of 7 was confirmed by single crystal X-ray analysis展开更多
基金supported by the National Natural Science Foundation of China Program (No. 31970883)。
文摘Amyloid-β 1-42(Aβ42)plays a pivotal role in Alzheimer disease(AD)pathogenesis. Peripheral clearance of Aβ42 largely affects its level in the brain and affects AD progression. Although nattokinase(NK)degrades Aβ40, the details of NK's capture of various Aβ species and reduction of plasma Aβ42/Aβ40 are uncharacterized. In this study, the Aβ42/Aβ40-degrading ability of NK was investigated using five Aβs and AD model mice. The C-terminal region of Aβ42/Aβ40(Gly29 to Val40)was primarily required for NK capture, and the integrated conformation in Aβ42/Aβ40 aggregates was a more efficient target for NK catalysis. Further, suspended Aβ42/Aβ40 oligomers were more easily captured by NK than suspended Aβ42/Aβ40 fibrils, while deposited Aβ42/Aβ40 fibrils recruited more NK than deposited Aβ42/Aβ40 oligomers. Although most NK was likely lost during NK uptake and/or entry into the blood, a small fraction of NK showed good plasma Aβ42/Aβ40-degrading efficacy after entering the blood due to NK's stability in the plasma of AD mice for at least 9 days. It was concluded that oral administration of NK is a feasible approach for peripheral Aβ42/Aβ40 clearance. This implies that NK might serve as an anti-Aβ42 agent for the treatment of Aβ42/Aβ40-related diseases such as AD.
基金Project supported by the Hi-Tech Research and Development Program(863) of China (No. 2002AA601270)
文摘The dectrochemical reduction characteristics of carbon tetrachlofide (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders' iron and the catalyzed Fe-Cu process was discussed. The results showed that CT was reduced directly on the surface of copper rather than by atomic hydrogen produced at the cathode in the catalyzed Fe-Cu process. The reduction was realized largely by atomic hydrogen in Master Builders' iron. The entire CT in 350 ml aqueous solution with 320 mg/L was reduced to trichloromethane and dichloromethane in 2.25 h when 100 g of scrap iron with Fe/Cu ratio of 10:1 (w/w) were used. Moreover, the reduction rate slowed with time. CT could be reduced at acidic, neutral and alkaline pH from solution by Fe-Cu bimetallic media, but the mechanisms were different. The degradation rate was not significantly influenced by pH in the catalyzed Fe-Cu process; in Master Builders' iron it clearly increased with decreasing pH. The kinetics of the reductions followed pseudo-first order in both cases. Furthermore, the reductions under acidic conditions proceeded faster than that under the neutral and alkaline conditions. The catalyzed Fe-Cu process was superior to Master Builders' iron in treating CT-containing water and this advantage was particularly noticeable under alkaline conditions. The reduction was investigated in the cathode (Cu) and anode (Fe) compartments respectively, the results showed that the direct reduction pathway played an important role in the reduction by the catalyzed Fe-Cu process. The catalyzed Fe-Cu process is of practical value.
文摘The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studied in alkaline medium(pH=11). The catalyzed Fe-Cu process was found more effective on degradation of NBCs compared to Master Builder's iron. The reduction rate by the catalyzed Fe-Cu process decreased in the following order: nitrobenzene 〉4-chloro-nitrobenzene ≥m-dinitrobenzene :〉 4-nitrophenol ≥2,4-dinitrotoluene 〉2-nitrophenol. The reduction rate by Master Builder's iron decreased in the following order: m-dinitrobenzene ≥4-chloro-nitrobenzene 〉4-nitrophenol 〉2,4-dinitrotoluene ≈nitrobenzene 〉2-nitrophenol. NBCs were reduced directly on the surface of copper rather than by the hydrogen produced at cathode in the catalyzed Fe-Cu process. The reduction was realized by the hydrogen produced at cathode and Fe(OH)2 in Master Builder's iron, It is an essential difference in reaction mechanisms between these two technologies. For this reason, the reduction by the catalyzed Fe-Cu depended greatly on NBC's electron withdrawing ability.
文摘Ammonium perchlorate(APC)is the most common oxidizer in use for solid rocket propulsion systems.However its initial thermal decomposition is an endothermic process that requires 102.5 J·g^-1.This manner involves high activation energy and could render high burning rate regime.This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer.Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing.TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size.XRD diffractogram demonstrated highly crystalline material.The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent-antisolvent technique.The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques.APC demonstrated an initial endothermic decomposition stage at 242℃ with subsequent two exothermic decomposition stages at 297,8℃ and 452.8℃ respectively.At 1 wt%,copper oxide offered decrease in initial endothermic decomposition stage by 30%.The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%.These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.
基金Projects(51804136,51764016)supported by the National Natural Science Foundation of ChinaProject(U1402271)supported by the Joint Funds of the National Natural Science Foundation of China+2 种基金Project(20181BAB216017)supported by the Jiangxi Provincial Natural Science Foundation,ChinaProject(GK-201803)supported by the Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,ChinaProjects(yy2016001,yy2016012)supported by the Research Fund Program of the State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources,China。
文摘The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the sintering of ZnS and FeS and used for the pressure acid leaching experiment.The variations in the potential of the pressure leaching system were investigated by using a self-designed potential autoclave.The results showed that compared to the non-iron sphalerite,there was a violent redox reaction between the 25.70%Fe-artificial sphalerite and dissolved oxygen during the process of pressure leaching;and the catalytic mechanism was attributed to the redox couple Fe^3+/Fe^2+,where Fe3+oxidizes the H2S gas film and the reduced Fe2+state is subsequently oxidized by the dissolved oxygen.Furthermore,the effect of temperature,H2SO4 concentration,and oxygen partial pressure on the artificial sphalerite with different iron contents was studied.The sphalerite samples with iron content were observed to dissolve more easily in sulfuric acid compared to the non-iron samples.Moreover,the activation energy of artificial sphalerite was observed to be lower in the sample with 25.70%iron content(22.26 kJ/mol)compared to that with no iron(32.31 kJ/mol);and the apparent reaction orders were obtained with respect to H2SO4 concentration(1.10 and 1.36)and oxygen partial pressure(1.29 and 1.41),respectively.A comprehensive kinetic model was developed on the basis of the experimental data and the fitted leaching ratio plot;and the kinetic equations for the leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation were determined.
基金This work was supported by Foundation from President of the Chinese Academic of Science and NSFC.
文摘A novel palladium-catalyzed coupling reaction for the preparation of derivatives of stilbazoles was presented. A series of stilbazoles were synthesized firstly by this highly efficient method. From this reaction it was found that reaction solvent is one of important factors in this catalytic system.
基金Supported by the Foundation of Education Committee of Liaoning Province (No. 990321076)
文摘The mechanism and related reaction paths in the hydroisomerization of n-pentane were studied by DFT calculations at the B3LYP/6-311++G^** level. Two possible transition states were theoretically predicted and verified by the vibration frequency analysis as well as the calculations of intrinsic reaction coordinates (IRC). Furthermore, the related reaction barriers were evaluated by single point energy at the MP2/6-311++G^** level with zero point vibration correction of DFT method. Thus, it is concluded that the isomerization might go through two pathways.
基金funding supported by the National Natural Science Foundation of China (Grant Nos. 2207827521978246)+3 种基金the National Key Research and Development Program of China (Grant No. 2019YFB1503903)the Key Area Research and Development Program of Guangdong Province (Grant No. 2020B0101070001)the Fundamental Research Funds for the Central Universities (Grant No. 20720190014)PetroChina Innovation Foundation (2019D5007-0413)。
文摘The selective oxidation of 5-hydroxymethylfurfural(HMF),a versatile bio-based platform molecule,leads to the formation of several intriguing and useful downstream chemicals,such as 2,5-diformylfuran(DFF),5-hydroxymethyl-2-furancarboxylic acid(HMFCA),formyl 2-furancarboxylic acid(FFCA),2,5-furandicarboxylic acid(FDCA) and furan-2,5-dimethylcarboxylate(FDMC).These products have been extensively employed to fabricate novel polymers,pharmaceuticals,sustainable dyes and many other value-added fine chemicals.The heart of the developed HMF oxidation processes is always the catalyst.In this regard,this review comprehensively summarized the established heterogeneous catalyst design strategy for the selective oxidation of HMF via thermo-catalysis.Particular attention has been focused on the reaction mechanism of HMF oxidation over different catalysts as well as enhancing the catalytic performance of the catalyst through manipulating the properties of the support and fabricating of multi-component metal nano-particles and oxides.The current challenges and possible research directions for the catalytic oxidation of HMF in the future are also discussed.
文摘Oxidation of alkybenzenes PhCH_2R(R=H, CH_3, C_2H_5 and n-C_3H_7) under 1 atm. of O_2 or air catalyzed by iron(Ⅱ, Ⅲ)-2,2'-bipyridine and 1,10-phenanthroline complexes, affords the aryl-substituted ketones and alcohols with the conversion of 15.00%~34.58% containing of 97.60%~99.80% ketones and alcohols. The turnover numbers of these catalysts are over 3500 mol-cat. ^(-1)for 3.5 h.
基金National Key Technology R&D Program,China(No.2011BAE07B08)the Fundamental Research Funds for the Central Universities,China(No.2232013D3-26)
文摘Unfixed reactive dyes stained on cotton fabric could be removed using Fe-tetra-amido macro-cyclic ligands( TAML) / H_2O_2 catalyzed oxidation system( COS). The colored washing-off wastewater also could be decolorized simultaneously in the same system. The decolourization kinetics showed that the decolourization ratio of reactive dyes in water could reach at least 80% at room temperature in 10 min,which followed the law of pseudo-first order reaction kinetics. The effects of the COS washing-off process parameters on the decolourization ratio,chemical oxygen demand( COD) of wastewater,K/S value,color fastness,color difference,and bursting strength were investigated in detail. The results showed that color fastness properties and final shade of fabric treated by COS were very similar to conventional soaping. The reactive dye molecules in wash-off bath were destroyed using the COS,potentially reduced COD which generated during conventional washing-off procedure.
文摘The kinetics of phase transfer catalyzed (PTC) disproportionation of elemental sulfur was studied in the range of OH<sup>-</sup> concentrationlin the aqueous phase from 0.02 to 0.14 mol/dm<sup>3</sup> and temperature from 45 to 70℃. A kinetic expression, R<sub>s</sub>a=k*[Q<sup>+</sup>]<sub>aq</sub>[OH<sup>-</sup>]<sub>aq</sub>[S]<sub>org</sub><sup>1/2</sup>, derived from the theory of mass transfer with rapid chemical reaction in liquid liquid system can be adopted to correlate the experimental data, and the apparent activation energy of the reaction was found to be 79kJ/mol. Kinetic evidence for PTC reaction of the system was given and a mechanism of PTC disproportionation of elemental sulfur was proposed.
文摘The Diels-Alder reaction of myrcene and acrolein catalyzed by modified HY zeolitewhich was prepared by mixing HY zeolite and anhydrous ZnCl2 under microwave irradiation wasStudied. High regioselectivity and good yield of para myrac aldehyde were obtained when the ratio ofZnCl2/HY (w/w) was 1:2 to 1:3.
文摘The exoellent enantioselectivity with o. p. >99% in asymmetrio borane reduction of acetophenone catalyzed by (4S, 5R ) 4, 5-diphenyi-1. 3. 2-oxazaborolidine has been achieved via the important modincation of the reaction conditions.
文摘Enzyme catalyzed esterifcation in organic solvent system depends highly oh conjugated salt pair at different PH. We ha,e shown that the addition of an appropriate sol id conjugated salt pair to the esterification rection mixtues is a simple and convenient method to obtain optimal pH level con ditions throughout the reaction.
基金This work was supported by Natural Science Foundation of Zhejiang Province.
文摘β-Bromovinyl tellurides are new difuctional reagents which undergo palladium-catalyzed cross-coupling reaction with alkenes to give conjugated dienyl tellurides.
基金the National Natural Science Foundation of China(No.20472074)the Innovation Fund for 0utstanding Scholar of Henan Province(No.0621001100)for financial support.
文摘A variety of β-enamino ketones were synthesized in high to excellent yields by reacting acetylacetone with amines in the presence of a catalytic amount of cerium(IV) ammonium nitrate (CAN) under ultrasonic irradiation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10275048 and 10305009)the Zhejiang Provincial Natural Science Foundation of China (Grant No 102067)
文摘An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with theconstant rate kernels In(n = 1,2, 3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k, j) = Kkj^v, and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k, j) = Lkj^v, whcre v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species ak (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (i) In the v 〈 0 case, the irreversible aggregation dominates the process, and ak(t) satisfies the conventional scaling form; (2) In the v ≥ 0 casc, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, ak(t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely.
基金This work was supported by National Natural Science Foundation of China
文摘The electrochemi luminescence <ecl> of a new reagent 6-<2-hydroxy-4-diethylaminophenylazo>-2, 3-dihydro-1, 4-phthatazine-1, 4-dione <HDEA> in basic aqueous solution was studied. Trace amount of silver showed significant effect on the efficiency of light emission of HDEA during a positive trigonometrical wave pulse was exerted on the electrodes In the present paper, the ecl spectra of HDEA have been measured. λ_(max) is 410 nm. The reaction of HDEA chemiluminescence and the circular voltammetry, ultraviolet-visible spectrometry for the system have been investigated. The possible mechanism of the ecl of HDEA-KCL-KOH-Ag(I) system has been proposed.
文摘Treatment of 11-isopropylidene-anti-4, 5-epoxy-endo-tricyclo[6. 2. 1. 02.7] undeca-4, 9-diene-3,6-dione(6) with methanolic sodium hydroxide results in Favorskii-type ring contraction with concomitant Cope rearrangement and Haller-Bauer cleavage, thereby affording dimethyl9-isopropxlidene-cis-bicyclo[4. 3. 0 ] nonane-(2S)-2, 3-dicarboxylate(7) as the ultimate product. The structure of 7 was confirmed by single crystal X-ray analysis