期刊文献+
共找到7,993篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进Faster R-CNN的苹果采摘视觉定位与检测方法 被引量:3
1
作者 李翠明 杨柯 +1 位作者 申涛 尚拯宇 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期47-54,共8页
针对采摘机器人对场景中目标分布密集、果实相互遮挡的检测及定位能力不理想问题,提出一种引入高效通道注意力机制(ECA)和多尺度融合特征金字塔(FPN)改进Faster R-CNN果实检测及定位方法。首先,利用表达能力较强的融合FPN的残差网络ResN... 针对采摘机器人对场景中目标分布密集、果实相互遮挡的检测及定位能力不理想问题,提出一种引入高效通道注意力机制(ECA)和多尺度融合特征金字塔(FPN)改进Faster R-CNN果实检测及定位方法。首先,利用表达能力较强的融合FPN的残差网络ResNet50替换原VGG16网络,消除了网络退化问题,进而提取更加抽象和丰富的语义信息,提升模型对多尺度和小目标的检测能力;其次,引入注意力机制ECA模块,使特征提取网络聚焦特征图像的局部高效信息,减少无效目标的干扰,提升模型检测精度;最后,采用一种枝叶插图数据增强方法改进苹果数据集,解决图像数据不足问题。基于构建的数据集,使用遗传算法优化K-means++聚类生成自适应锚框,提高模型定位准确性。试验结果表明,改进模型对可抓取和不可直接抓取苹果的精度均值分别为96.16%和86.95%,平均精度均值为92.79%,较传统Faster R-CNN提升15.68个百分点;对可抓取和不可直接抓取的苹果定位精度分别为97.14%和88.93%,较传统Faster R-CNN分别提高12.53个百分点和40.49个百分点;内存占用量减少38.20%,每帧平均计算时间缩短40.7%,改进后的模型参数量小且实时性好,能够更好地应用于果实采摘机器人视觉系统。 展开更多
关键词 苹果采摘机器人 目标定位与检测 Faster R-cnn 注意力机制 特征金字塔
下载PDF
基于GRU-CNN双网络输出构建BP模型的径流预测方法 被引量:1
2
作者 张玥 姜中清 +2 位作者 周伊 周静姝 王宇露 《水力发电》 CAS 2024年第6期17-22,共6页
提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预... 提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预测。首先,构建GRU和CNN深度学习网络,同步输出2条径流预测序列;其次,在已知时段内,构建2条预测结果与实测值之间的多变量BP模型;最后,基于双网络输出预测值,通过确定的BP模型输出径流预测结果。经测试,该方法给预测时段提供了可靠的先验样本,高效学习了网络输出与真实值之间关系,预测精度显著提升。 展开更多
关键词 洪水预报 径流预测 双网络输出 GRU cnn BP神经网络
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测 被引量:2
3
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(LSTM) 注意力机制 卷积神经网络(cnn)
下载PDF
基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法 被引量:1
4
作者 王硕 吴楠 +1 位作者 黄洁 王建涛 《指挥控制与仿真》 2024年第1期55-63,共9页
针对因深度学习自身局限性和递归预测策略产生的累积误差,导致航迹预测精度不高的问题,提出了一种基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法。首先,引入卷积模块用于提取航迹数据之中具有潜在关联的空间位置特征,利用双向长短... 针对因深度学习自身局限性和递归预测策略产生的累积误差,导致航迹预测精度不高的问题,提出了一种基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法。首先,引入卷积模块用于提取航迹数据之中具有潜在关联的空间位置特征,利用双向长短时记忆网络提取航迹数据中的时序特征,并实现对空中目标的实时单步预测和多步超前预测;其次,引入整合移动平均自回归为残差修正模型,对实时单步预测产生的残差建模,计算混合神经网络模型多步超前预测时的残差值;最后,将混合神经网络模型和残差修正模型的输出结果进行融合,得到最终的航迹预测值。实验结果表明,该算法大大降低了神经网络因自身局限性产生的误差和因递归策略预测产生的累积误差,能够显著提高空中目标航迹短期预测的精度。 展开更多
关键词 残差修正 cnn-BiLSTM 短期预测 ARIMA
下载PDF
基于CNN-LSTM的水泥熟料f-CaO预测模型
5
作者 郑涛 刘辉 +3 位作者 陈薇 杨恺 张建飞 褚彪 《控制工程》 CSCD 北大核心 2024年第7期1263-1271,共9页
水泥熟料中游离氧化钙(f-CaO)含量的传统人工离线检测缺乏时效性,不利于生产指导。针对离线检测的滞后问题和软测量模型中f-CaO含量与辅助变量的时序匹配问题,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短时记... 水泥熟料中游离氧化钙(f-CaO)含量的传统人工离线检测缺乏时效性,不利于生产指导。针对离线检测的滞后问题和软测量模型中f-CaO含量与辅助变量的时序匹配问题,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短时记忆(long short-term memory,LSTM)神经网络的f-CaO含量预测模型。首先,利用滑动窗口截取辅助变量的区间数据;然后,采用CNN提取区间数据的时序特征;之后,构建LSTM神经网络模型;最后,控制截取辅助变量的延迟时间和间隔时间,根据模型预测拟合度提取辅助变量的最优时序特征。仿真结果表明,所提模型提高了水泥熟料中f-CaO含量的预测精度。 展开更多
关键词 时序特征 滑动窗口 cnn LSTM神经网络 最优时序特征 预测精度
下载PDF
基于CNN-BiLSTM的ICMPv6 DDoS攻击检测方法
6
作者 郭峰 王春兰 +2 位作者 刘晋州 王明华 韩宝安 《火力与指挥控制》 CSCD 北大核心 2024年第9期122-129,共8页
针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生的过拟合问题,同时更准确地提取数据的特性数据。通过实... 针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生的过拟合问题,同时更准确地提取数据的特性数据。通过实验表明:提出的算法在多次实验中的检测准确率、误报率与漏报率平均值分别为92.84%、4.49%和10.54%,检测算法泛化性较强,性能由于其他算法,能够有效处理ICMPv6 DDoS攻击检测问题。 展开更多
关键词 分布式拒绝服务攻击 攻击检测 ICMPV6 cnn BiLSTM
下载PDF
基于改进CNN-SVM的光伏组件红外图像故障诊断方法
7
作者 王艳 申宗旺 +1 位作者 赵洪山 李伟 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第3期110-117,共8页
为识别光伏组件故障类型,提高光伏系统发电效率,提出了一种基于改进CNN-SVM模型的光伏组件红外图像故障诊断方法。首先以光伏组件红外图像为输入样本构建改进CNN模型,采用全局平均池化层代替传统CNN模型的全连接层,在进行图像特征提取... 为识别光伏组件故障类型,提高光伏系统发电效率,提出了一种基于改进CNN-SVM模型的光伏组件红外图像故障诊断方法。首先以光伏组件红外图像为输入样本构建改进CNN模型,采用全局平均池化层代替传统CNN模型的全连接层,在进行图像特征提取的同时降低模型参数量;利用数据增强和批归一化技术提高模型泛化能力,降低模型过拟合。其次采用非线性支持向量机SVM代替传统CNN模型中的Softmax分类器,以提高光伏组件红外图像故障识别准确率。最后采用Infrared Solar Modules数据集对所提模型进行了实例验证。结果表明:与传统CNN模型相比,改进CNN-SVM模型故障诊断准确率高,对各故障类型的识别能力强。 展开更多
关键词 光伏组件 红外图像 故障诊断 cnn SVM
下载PDF
基于Transformer和CNN交错混合的肺结节分割网络
8
作者 吴骏 侯宪哲 +2 位作者 王健 肖志涛 王雯 《天津工业大学学报》 CAS 北大核心 2024年第1期74-81,共8页
针对肺结节尺寸多样、形状异质化高等问题,提出基于Transformer和卷积神经网络(CNN)交错混合(IMTC)的肺结节分割网络,该网络是一个对称的层次连接网络,具有很强的多尺度特征提取能力。该网络通过集成2种方案分别解决肺结节多尺寸与形状... 针对肺结节尺寸多样、形状异质化高等问题,提出基于Transformer和卷积神经网络(CNN)交错混合(IMTC)的肺结节分割网络,该网络是一个对称的层次连接网络,具有很强的多尺度特征提取能力。该网络通过集成2种方案分别解决肺结节多尺寸与形状异质化问题:(1)采用感知注意力模块(inception attention module,IAM),通过并联多个不同大小的卷积核来增加浅层网络的感受野组合,以此捕获更为丰富的浅层特征;(2)为获取更具表示能力的高级语义特征,利用由Transformer和CNN组成的基本骨干网络交错提取结节特征,使得全局特征与局部特征充分融合,从而提高结节特征表示的泛化能力和鲁棒性。实验结果表明:本文模型可以准确分割直径较小以及边缘复杂的肺结节,在LUNA16公开数据集上分割性能良好,Dice和IOU分别达到86.15%和76.10%。 展开更多
关键词 肺结节 TRANSFORMER 卷积神经网络(cnn) 感知注意力模块(IAM) 交错混合
下载PDF
Transformer-CNN特征跨注意力融合学习的行人重识别
9
作者 项俊 张金城 +1 位作者 江小平 侯建华 《计算机工程与应用》 CSCD 北大核心 2024年第16期94-104,共11页
卷积神经网络(convolutional neural network,CNN)关注局部特征,难以获得全局结构信息,Transformer网络建模长距离的特征依赖,但易忽略局部特征细节。提出了一种跨注意力融合学习的行人重识别算法,利用CNN和Transformer特征学习网络的特... 卷积神经网络(convolutional neural network,CNN)关注局部特征,难以获得全局结构信息,Transformer网络建模长距离的特征依赖,但易忽略局部特征细节。提出了一种跨注意力融合学习的行人重识别算法,利用CNN和Transformer特征学习网络的特点,在丰富行人局部特征的同时改善特征的全局表达能力。该模型由三个部分构成:CNN分支主要提取局部细节信息;Transformer分支侧重于关注全局特征信息;跨注意力融合分支通过自注意力机制计算上述两个分支特征的相关性,进而实现特征融合,最终提高模型的表征能力。剥离实验以及在Market1501和DukeMTMC-reID数据集的实验结果证明了所提方法的有效性。 展开更多
关键词 行人重识别 卷积神经网络(cnn) TRANSFORMER 跨注意力融合学习
下载PDF
基于3D CNN-BiLSTM-ATFA网络和步态特征的奶牛个体识别方法
10
作者 司永胜 宁泽普 +2 位作者 王克俭 马亚宾 袁明 《农业机械学报》 EI CAS CSCD 北大核心 2024年第7期315-324,共10页
针对基于花纹的奶牛个体识别中纯色或花纹较少的奶牛识别准确率较低的问题,本文提出一种基于步态特征的奶牛个体识别方法。首先,将DeepLabv3+语义分割算法的主干网络替换为MobileNetv2网络,并引入基于通道和空间的CBAM注意力机制,利用... 针对基于花纹的奶牛个体识别中纯色或花纹较少的奶牛识别准确率较低的问题,本文提出一种基于步态特征的奶牛个体识别方法。首先,将DeepLabv3+语义分割算法的主干网络替换为MobileNetv2网络,并引入基于通道和空间的CBAM注意力机制,利用改进后模型分割出奶牛的剪影图。然后,将三维卷积神经网络(3D CNN)和双向长短期记忆网络(BiLSTM)构建为3D CNN-BiLSTM网络,并进一步集成自适应时间特征聚合模块(ATFA)生成3D CNN-BiLSTM-ATFA奶牛个体识别模型。最后,在30头奶牛的共1242条视频数据集上进行了奶牛个体识别实验。结果表明,改进后DeepLabv3+算法的平均像素准确率、平均交并比、准确率分别为99.02%、97.18%和99.71%。采用r3d_18作为3D CNN-BiLSTM-ATFA的主干网络效果最优。基于步态的奶牛个体识别平均准确率、灵敏度和精确度分别为94.58%、93.47%和95.94%。奶牛躯干和腿部不同部位进行加权特征融合的个体识别实验表明识别准确率还可进一步提高。奶牛跛足对步态识别效果影响较为明显,实验期间由健康变为跛足和一直跛足的奶牛个体识别准确率分别为89.39%和92.61%。本文研究结果可为奶牛的智能化个体识别提供技术参考。 展开更多
关键词 奶牛 个体识别 步态特征 3D cnn BiLSTM
下载PDF
基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究
11
作者 王彦快 孟佳东 +2 位作者 张玉 杨建刚 王贵强 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2944-2956,共13页
针对道岔故障特征不易提取以及道岔故障诊断准确率较低的问题,提出一种格拉姆角差场(Gramian Angular Difference Fields, GADF)与二维卷积神经网络(Two Dimensional Convolutional Neural Network, 2D CNN)-改进支持向量机(Support Vec... 针对道岔故障特征不易提取以及道岔故障诊断准确率较低的问题,提出一种格拉姆角差场(Gramian Angular Difference Fields, GADF)与二维卷积神经网络(Two Dimensional Convolutional Neural Network, 2D CNN)-改进支持向量机(Support Vector Machine, SVM)的道岔故障诊断组合方法。首先,结合现场实际应用情况,选取道岔设备正常转换与典型故障的转辙机功率曲线,建立转辙机功率曲线样本数据库;采用GADF编码将一维转辙机功率曲线信号转换为具有时间相关性的二维特征图,分别选择16×16、32×32以及64×64大小的特征图并提取图像数据。其次,在LeNet-5模型的基础上设计2D CNN网络结构,并将图像数据输入至基于2D CNN的道岔故障特征提取模型中,经多层的卷积层、池化层以及全连接层提取特征指标,建立道岔故障诊断样本数据库。最后,通过北方苍鹰优化(Northern Goshawk Optimization, NGO)算法优化SVM算法的惩罚因子与核函数方差,构建基于NGO-SVM的道岔故障诊断模型。实验结果分析表明,将转辙机功率曲线数据经GADF编码为64×64大小的特征图,并通过2D CNN模型提取道岔典型特征数据,较其他数据处理方法具有较高的故障诊断准确率,同时提高了故障诊断实时性;将建立的道岔故障诊断样本数据库输入至NGO-SVM道岔故障诊断模型,其故障诊断准确率高达97.5%,较其他故障诊断模型具有更好的故障诊断性能,为道岔故障诊断提供了一种新方法,对现场道岔设备的日常维修具有一定的指导意义。 展开更多
关键词 道岔设备 故障诊断 GADF 2D cnn NGO-SVM
下载PDF
基于改进Faster R-CNN的热轧带钢表面缺陷检测 被引量:1
12
作者 邓慧 曾磊 《控制工程》 CSCD 北大核心 2024年第4期752-759,共8页
热轧带钢是钢铁行业的重要产品,其表面缺陷是影响产品质量的重要因素。针对传统缺陷检测算法存在的过程繁琐、精度不足和效率低下等问题,提出一种基于改进更快速区域卷积神经网络(faster region-based convolutional neural network,Fas... 热轧带钢是钢铁行业的重要产品,其表面缺陷是影响产品质量的重要因素。针对传统缺陷检测算法存在的过程繁琐、精度不足和效率低下等问题,提出一种基于改进更快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)的检测算法,实现对热轧带钢表面缺陷的高效、高精度检测。首先,采用特征相加的方法对底层细节特征和高层语义特征进行融合;然后,采用精准的感兴趣区域池化(precise region of interest pooling,Precise ROI Pooling)获取固定大小的特征向量,避免特征出现位置偏差;最后,利用均值偏移聚类算法对带钢数据集进行聚类,获得适用于热轧带钢表面缺陷检测的先验框尺寸。实验结果表明,所提算法在热轧带钢表面缺陷检测数据集上的平均精度均值达到了85.34%,检测速度为23.5帧/s,且鲁棒性良好,满足实际的工业检测需求。 展开更多
关键词 表面缺陷检测 Faster R-cnn 特征融合 Precise ROI Pooling 均值偏移
下载PDF
基于Mask R-CNN的地质雷达岩溶预报图像识别研究 被引量:1
13
作者 伊小娟 罗威 +2 位作者 李伟 王志军 尹小康 《高速铁路技术》 2024年第2期50-55,共6页
岩溶隧道开挖可能遭遇岩溶涌水、突泥等岩溶地质灾害,地质雷达能够有效预报岩溶等地质灾害。然而,传统地质雷达图像解译存在专家经验依赖性强、解译效率慢且易误判漏判等情况。本文采用可实现端到端识别的深度学习技术开展地质雷达图像... 岩溶隧道开挖可能遭遇岩溶涌水、突泥等岩溶地质灾害,地质雷达能够有效预报岩溶等地质灾害。然而,传统地质雷达图像解译存在专家经验依赖性强、解译效率慢且易误判漏判等情况。本文采用可实现端到端识别的深度学习技术开展地质雷达图像目标检测与识别的研究,将基于Mask R-CNN的卷积神经网络算法应用于地质雷达岩溶预报图像异常的智能识别。在TensorFlow和Keras框架下,利用地质雷达设备采集获得的数据构建训练数据集和测试数据集,对Mask R-CNN深度学习模型进行训练,最终得到权重参数较好的地质雷达岩溶预报图像的双曲异常检测模型。试验结果及应用案例表明,Mask R-CNN目标检测方法在地质雷达岩溶预报图像的目标检测与识别上取得了良好的效果,有效提高了地质雷达图像的智能化识别效率。 展开更多
关键词 地质雷达 MaskR-cnn 岩溶空洞 智能识别
下载PDF
基于EMI-CNN的建筑施工模板支撑体系节点健康监测
14
作者 徐菁 闫尊昊 +1 位作者 杨松森 刘客 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期83-90,共8页
为预防模板坍塌引发建筑施工安全事故风险,提出一种基于压电阻抗法(EMI)和卷积神经网络(CNN)的模板支撑体系节点智能监测方法。首先,利用压电陶瓷传感器(PZT)的机电耦合特性及其集驱动-传感于一体的特点,建立PZT-节点耦合系统的机电阻... 为预防模板坍塌引发建筑施工安全事故风险,提出一种基于压电阻抗法(EMI)和卷积神经网络(CNN)的模板支撑体系节点智能监测方法。首先,利用压电陶瓷传感器(PZT)的机电耦合特性及其集驱动-传感于一体的特点,建立PZT-节点耦合系统的机电阻抗传感机制模型;其次,基于EMI法,以与待测结构耦合的PZT片电导信号为监测指标,确定模板支撑体系节点松动的发生;然后,以敏感频段内PZT片的801个原始电导信号为模型输入,9个节点松动程度为模型输出,构建162组学习样本和27组测试样本,建立EMI-CNN模型,确定节点松动程度;最后,以一个实际工程中的建筑施工模板体系节点为例,验证EMI-CNN模型的有效性,并对比分析EMI-BP模型。研究结果表明:EMI-CNN模型经过85次迭代达到收敛,预测准确率达到100%,相较于EMI-BP模型提高29.63%。该监测方法可实现对建筑施工模板支撑体系节点健康状态实时、准确、无损监测。 展开更多
关键词 压电阻抗法(EMI) 卷积神经网络(cnn) 建筑施工 模板支撑体系 健康监测 压电陶瓷传感器(PZT)
下载PDF
基于空间注意力机制的Mask R-CNN致密储层岩石薄片图像鉴定
15
作者 李春生 刘涛 +7 位作者 刘宗堡 张可佳 刘芳 刘晓文 田梦晴 白玉磊 尹靖淞 卢羿州 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期24-32,共9页
针对陆相致密储层岩石薄片鉴定识别难、制片成本高、时间消耗长和人为主观强等难题,选取鄂尔多斯盆地临兴区块上古生界和松辽盆地三肇凹陷扶余油层为靶区,提出一种基于深度学习的致密油储层岩石薄片人工智能鉴定方法,引入图像预处理技... 针对陆相致密储层岩石薄片鉴定识别难、制片成本高、时间消耗长和人为主观强等难题,选取鄂尔多斯盆地临兴区块上古生界和松辽盆地三肇凹陷扶余油层为靶区,提出一种基于深度学习的致密油储层岩石薄片人工智能鉴定方法,引入图像预处理技术去除岩石薄片图像噪声并统一图像像素大小,构建空间几何增广机制,基于空间注意力机制改进Mask R-CNN算法,并将上述方法应用于实例靶区进行有效性验证。结果表明:图像预处理技术能够在保障图像特征的前提下,有效提高图像质量,减少噪声干扰;空间几何图像增广机制能够在在一定程度上增加可用样本的数量;基于空间注意力机制的Mask R-CNN算法可以同时完成复杂岩石薄片成分的分割与智能识别工作,分割精度在不同数据集情况下的平均精度为89.2%,整体识别准确率为93%,适用于致密油储层岩石薄片特征鉴定。 展开更多
关键词 致密储层 岩石薄片 深度学习 Mask R-cnn算法 分割与识别
下载PDF
组合模型对管道腐蚀速率预测的效能研究--基于注意力机制增强的CNN与LSTM模型
16
作者 骆正山 杜丹 +1 位作者 骆济豪 王小完 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4263-4269,共7页
为评估卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络及结合的CNN-LSTM模型在管道腐蚀速率预测中的性能表现,特别引入注意力机制,以期提高模型对关键特征的捕捉能力和预测的准确性。... 为评估卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络及结合的CNN-LSTM模型在管道腐蚀速率预测中的性能表现,特别引入注意力机制,以期提高模型对关键特征的捕捉能力和预测的准确性。分析影响管道腐蚀速率的环境因素作为模型输入,并通过注意力机制优化特征表示。结果表明,结合注意力机制的CNN-LSTM模型在准确性和可靠性上超越了单独的CNN或LSTM模型。这一结果不仅展示了深度学习模型通过技术增强了处理复杂数据的能力,也为实际工业应用中的时间序列预测提供了新的视角,同时证实了利用深度学习技术对管道腐蚀速率进行精确预测的可行性和有效性。 展开更多
关键词 安全工程 管道腐蚀速率预测 卷积神经网络(cnn) 长短期记忆(LSTM) 注意力机制 时间序列分析
下载PDF
基于BE-MCNN模型的新闻评论情感分析方法 被引量:1
17
作者 李文书 管平 《软件导刊》 2024年第3期1-7,共7页
实时新闻评论具有文本短、信息丰富、结构复杂等特点,情感分析难以准确捕捉其真实的情感倾向。为增强语义的特征信息,减少模型过拟合问题,提高新闻评论情感分析的准确性,提出一种融合BERT模型、Transformer En⁃coder与多尺度CNN模型的... 实时新闻评论具有文本短、信息丰富、结构复杂等特点,情感分析难以准确捕捉其真实的情感倾向。为增强语义的特征信息,减少模型过拟合问题,提高新闻评论情感分析的准确性,提出一种融合BERT模型、Transformer En⁃coder与多尺度CNN模型的新闻评论情感分析算法。首先,针对新闻评论长度较短、表达情绪观点内容较多的特点,使用BERT模型对新闻评论文本进行预训练,获得具有上下文信息的特征向量;其次,为解决模型过拟合问题,在BERT模型下游添加一层Transformer编码器;最后使用四通道双层CNN模型,通过组合不同大小尺寸的卷积核来提升模型分析新闻评论情感的性能。实验结果表明,该方法在两个新闻评论数据集上的准确率分别达到93.0%与96.4%;与不同模型的比较实验进一步证明了所提方法的有效性。 展开更多
关键词 情感分析 BERT模型 Transformer Encoder 多尺度cnn 新闻评论
下载PDF
基于FPGA加速的Mask R-CNN稻瘟病高通量自适应识别模型研究
18
作者 杨宁 程巍 +2 位作者 张钊源 方啸 毛罕平 《农业机械学报》 EI CAS CSCD 北大核心 2024年第7期298-304,314,共8页
针对基于图像的稻瘟病现场检测技术依赖先验知识且受制于算力与田间网络状况,无法实现自适应实时检测的问题,提出一种可利用现场可编程门阵列(Field programmable gate array,FPGA)加速的Mask R-CNN(Mask region-based convolutional ne... 针对基于图像的稻瘟病现场检测技术依赖先验知识且受制于算力与田间网络状况,无法实现自适应实时检测的问题,提出一种可利用现场可编程门阵列(Field programmable gate array,FPGA)加速的Mask R-CNN(Mask region-based convolutional neural network)稻瘟病高通量自适应快速识别模型。首先将骨干网络改进为MobileNetV2,利用其倒残差模块降低计算量,提高模型并行处理能力;随后增加用于稻瘟病多尺度特征融合的特征金字塔网络模块,使模型具备多尺度自适应处理能力;最后由全卷积网络(Fully convolutional network,FCN)分支输出稻瘟病病斑的实例分割,同时使用交叉熵损失函数完成稻瘟病的定位与分类。稻瘟病实测数据集对模型的验证结果表明:当输入为全高清图像时,模型平均推理时间减少至85 ms,相较GPU服务器、同级别GPU边缘计算平台,速度分别提高86.2%、63.0%。在交并比为0.6时,准确率可达98.0%,病斑捕获能力平均提升21.2%。提出的Mask R-CNN自适应快速识别模型能够在田间恶劣网络状况下实现稻瘟病的快速现场检测,具有更好的抗噪能力和鲁棒性能,为水稻病害实时检测、察打一体提供了高效实时的片上系统方案。 展开更多
关键词 稻瘟病检测 目标检测 Mask R-cnn 现场可编程门阵列
下载PDF
基于小波变换和CNN-Transformer模型的测井储层流体识别
19
作者 龚安 张恒 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第4期108-116,共9页
针对具有复杂储集空间和极强的非均质性的低孔低渗储层,常规测井响应特征不够明显,使用传统解释手段难以有效识别储层流体的问题,提出了一种基于小波变换和CNN-Transformer混合模型的储层流体识别方法。首先,使用小波变换将测井信号从... 针对具有复杂储集空间和极强的非均质性的低孔低渗储层,常规测井响应特征不够明显,使用传统解释手段难以有效识别储层流体的问题,提出了一种基于小波变换和CNN-Transformer混合模型的储层流体识别方法。首先,使用小波变换将测井信号从时域扩展到时频域,并生成时频谱图以增强信号特征,然后使用滑动时窗沿着测井曲线深度方向滑动采样,获取代表解释深度处地层信息的频谱特征图,最后,通过训练CNN-transformer模型深度挖掘特征图信息,实现储层流体识别。混合模型在利用储层对应深度处测井数据的同时,又兼顾测井曲线随深度的变化趋势和地层前后信息的关联性,挖掘时频谱图的局部细节和全局特征表示,自动识别流体类型。将模型应用于大港油田22口实测测井资料中,并与CNN和BiLSTM等多个模型的流体识别效果进行对比分析,基于小波变换和CNN-Transformer模型识别效果明显优于其他方法,在测试集上识别准确率达到了92.7%。研究结果表明该方法可以作为低孔渗油藏常规测井资料识别储层流体的有效手段,为流体评价提供了新思路。 展开更多
关键词 流体识别 测井曲线 小波变换 cnn-Transformer
下载PDF
改进Mask R-CNN的馆藏报纸图像内容分割
20
作者 倪劼 叶江松 谢恩泽 《图书馆论坛》 CSSCI 北大核心 2024年第6期110-118,共9页
开展馆藏报纸图像内容分割研究,能提升文字识别准确率,对促进机器识别取代人工操作、提高图书馆数字化工作效率具有重要意义。文章根据报纸图像呈现的特征,提出一种基于改进MaskR-CNN的算法,实现报纸图像内容分割。首先,通过优化锚框比... 开展馆藏报纸图像内容分割研究,能提升文字识别准确率,对促进机器识别取代人工操作、提高图书馆数字化工作效率具有重要意义。文章根据报纸图像呈现的特征,提出一种基于改进MaskR-CNN的算法,实现报纸图像内容分割。首先,通过优化锚框比例和损失函数,对原始MaskR-CNN算法进行改进。其次,采用数据增强、调整训练参数开展样本训练。最后,通过实验的方式对改进后的MaskR-CNN算法训练模型和原始算法训练模型进行比较,并采用AP_bbox和AP_segm评价指标对实验结果进行评估,改进后的算法训练模型AP_bbox为0.935,AP_segm为0.943,均超过原始算法训练模型。实验结果表明,改进后的MaskR-CNN算法能够实现报纸图像内容有效检测与分割。 展开更多
关键词 Mask R-cnn 报纸数字化 内容分割 目标检测
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部