期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于自适应多保真度Co-Kriging代理模型的地下水污染源反演识别 被引量:1
1
作者 安永凯 张岩祥 闫雪嫚 《中国环境科学》 EI CAS CSCD 北大核心 2024年第3期1376-1385,共10页
为高效率高精度地进行地下水污染源反演识别,综合运用高保真度和低保真度地下水溶质运移数值模拟模型,研究应用集成差分进化算法的Co-Kriging方法建立模拟模型的多保真度代理模型;在此基础上,探索应用马尔科夫链蒙特卡洛(MCMC)-DREAM_((... 为高效率高精度地进行地下水污染源反演识别,综合运用高保真度和低保真度地下水溶质运移数值模拟模型,研究应用集成差分进化算法的Co-Kriging方法建立模拟模型的多保真度代理模型;在此基础上,探索应用马尔科夫链蒙特卡洛(MCMC)-DREAM_((D))算法,并采用自适应更新多保真度代理模型策略进行地下水污染源反演识别.为验证上述方法的有效性和可行性,开展了数值算例研究.结果表明:相比仅基于高保真度模型输入-输出样本构建的Kriging代理模型,联合运用高保真度和低保真度模型输入-输出样本构建的Co-Kriging代理模型对模拟模型的逼近精度更高;耦合多保真度Co-Kriging代理模型和MCMC-DREAM_((D))算法能够得到较高精度的污染源反演结果,且能够大幅度减小计算负荷;同时,采用自适应更新多保真度代理模型策略能够进一步提高污染源反演识别精度. 展开更多
关键词 地下水污染源 多保真度代理模型 co-kriging方法 DREAM((D))算法 自适应
下载PDF
On the Mathematical Model of Universal Co-kriging
2
作者 韩燕 《Northeastern Mathematical Journal》 CSCD 2007年第3期272-282,共11页
Due to its complexities in both mathematicM formulations and applications, universal co-kriging (UCK) has not been sufficiently discussed in literature. An extended and simpler matrix formulation UCK with incorporat... Due to its complexities in both mathematicM formulations and applications, universal co-kriging (UCK) has not been sufficiently discussed in literature. An extended and simpler matrix formulation UCK with incorporation of a polynomial variable trend is proposed in this paper. Estimators of the value and expectation of a regionMized vector taken in a point are obtained on the basis of cross-covaxiance and cross-vaxiogram, respectively. The complex expressions of co-kriging with trend are greatly simplified by introducing special matrix operations, such as Kronecker product, into the formulations. This simplification offers a feasible and easier approach for computer coding of the UCK, and helps the practitioners to use the UCK technique conveniently in real cases. 展开更多
关键词 GEOSTATISTICS co-kriging matrix analysis regionalized vector
下载PDF
基于Co-Kriging代理模型的扇形冷却孔结构优化
3
作者 陈萍 左宁 +2 位作者 王泽轩 齐婷婷 于明月 《沈阳航空航天大学学报》 2022年第3期63-71,共9页
为进一步提高航空发动机的冷却效率,对扇形气膜冷却孔进行优化研究,优化参数为直孔段孔长L,前向扩展角α和后向扩展角β,优化目标为气膜孔下游内平均气膜冷却效率。首先对优化变量进行拉丁超立方采样,然后对疏、密两种质量的网格进行有... 为进一步提高航空发动机的冷却效率,对扇形气膜冷却孔进行优化研究,优化参数为直孔段孔长L,前向扩展角α和后向扩展角β,优化目标为气膜孔下游内平均气膜冷却效率。首先对优化变量进行拉丁超立方采样,然后对疏、密两种质量的网格进行有限元分析,得到两种可信度数据,进而构建Co-Kriging代理模型,最后引入遗传算法进行全局寻优,寻找最优的扇形孔结构。在吹风比为1.5的工况下,优化后的直孔段孔长、前向扩展角和后向扩展角分别为2.6D、41°、14°,冷却效率提升了45%。研究结果表明,较小的直孔段和较大的后向扩展角可以有效地抑制肾型涡对的产生,气膜冷却效果更好。 展开更多
关键词 扇形孔 优化设计 co-kriging代理模型 遗传算法 冷却效率
下载PDF
基于置信区间的约束多精度序贯代理模型优化方法及应用 被引量:1
4
作者 钱家昌 程远胜 张锦岚 《中国舰船研究》 CSCD 北大核心 2021年第4期37-43,共7页
[目的]水下结构物优化设计领域面临着仿真耗时优化的难题。针对目标不耗时、约束耗时这类优化问题,开展多精度数据来源情况下的约束序贯代理模型优化方法研究。[方法]提出一种基于置信区间的约束多精度序贯Co-Kriging代理模型优化方法(M... [目的]水下结构物优化设计领域面临着仿真耗时优化的难题。针对目标不耗时、约束耗时这类优化问题,开展多精度数据来源情况下的约束序贯代理模型优化方法研究。[方法]提出一种基于置信区间的约束多精度序贯Co-Kriging代理模型优化方法(MF-SCU-CI),建立能综合评估代理模型不确定性水平、高/低精度模型相关程度以及成本系数的Co-H函数,用于指导序贯优化过程。然后,通过3个典型的数值测试函数和纵横加筋圆锥壳结构振动优化工程案例进行应用研究。[结果]结果表明,所提出的MF-SCUCI方法较基于置信区间的约束单精度序贯代理模型优化方法(SCU-CI)具有更优的可行性比率,且优化求解效率更高,能够进一步减少耗时的仿真次数。[结论]该方法适用性好,具有良好的工程应用前景。 展开更多
关键词 代理模型 co-kriging 多精度 置信区间 序贯约束更新优化
下载PDF
利用半自由点质量模型拟合局部(似)大地水准面 被引量:1
5
作者 况代智 冯进凯 李伟 《大地测量与地球动力学》 CSCD 北大核心 2019年第10期1027-1032,共6页
为提高GPS/水准法拟合(似)大地水准面的精度,基于重力场等效逼近理论,建立一种半自由点质量模型。顾及相邻点之间的关系并结合高程异常与扰动位之间解析式的特殊性,提出确定模型参数(埋深和大小)的迭代算法,通过拟合点下方多个不同埋深... 为提高GPS/水准法拟合(似)大地水准面的精度,基于重力场等效逼近理论,建立一种半自由点质量模型。顾及相邻点之间的关系并结合高程异常与扰动位之间解析式的特殊性,提出确定模型参数(埋深和大小)的迭代算法,通过拟合点下方多个不同埋深质点实现重力场元的多频段拟合,并利用不同条件的实验数据进行拟合实验。结果表明,利用该模型进行(似)大地水准面拟合是可行的,其精度较传统的Kriging/Co-Kriging法高。 展开更多
关键词 点质量模型 (似)大地水准面 迭代算法 Kriging法 co-kriging
下载PDF
高效率采样的数据关联融合气动力建模方法 被引量:1
6
作者 宁晨伽 王旭 +1 位作者 王文正 张伟伟 《空气动力学学报》 CSCD 北大核心 2022年第5期39-49,共11页
飞行器设计阶段的气动分析需要大量的高保真度气动力数据以提高设计性能,但其获取成本十分高昂。为了缓解建模成本与模型精度之间的矛盾,构建了关联不同保真度数据的多保真度气动数据融合模型,并提出了最优关联点选取方法和均匀性增强... 飞行器设计阶段的气动分析需要大量的高保真度气动力数据以提高设计性能,但其获取成本十分高昂。为了缓解建模成本与模型精度之间的矛盾,构建了关联不同保真度数据的多保真度气动数据融合模型,并提出了最优关联点选取方法和均匀性增强序贯采样方法,以此实现co-Kriging变可信度模型的高效初始化与最速收敛。作为验证,选用标准数值算例开展建模研究,并结合统计结果对方法精度优劣进行了对比。最后将该建模框架成功应用于NACA0012翼型跨声速气动力工程算例当中。结果表明,与传统模型相比,在仅有的少量高保真度样本下,所采用的方法可以大幅提升变可信度模型收敛精度和建模效率,有效降低了采样成本;相较于高保真度单精度元模型,误差可降低50%以上。 展开更多
关键词 数据关联融合 变可信度模型 样本初始化 co-kriging 序贯采样
下载PDF
滑翔制导炮弹鸭舵的气动外形快速优化研究 被引量:4
7
作者 赵璇 常思江 倪旖 《航空兵器》 CSCD 北大核心 2021年第5期99-105,共7页
为提高炮弹气动力计算的精度,常需要通过计算流体力学数值仿真反复迭代计算炮弹的气动参数,优化效率较低。本文提出一种基于多可信度代理模型的气动外形快速优化方法,在保证计算精度的条件下大幅提高计算效率。以某滑翔制导炮弹的鸭舵... 为提高炮弹气动力计算的精度,常需要通过计算流体力学数值仿真反复迭代计算炮弹的气动参数,优化效率较低。本文提出一种基于多可信度代理模型的气动外形快速优化方法,在保证计算精度的条件下大幅提高计算效率。以某滑翔制导炮弹的鸭舵外形优化为例,采用两种可信度样本训练出多可信度代理模型代替耗时的计算流体力学仿真获得气动参数,依据滑翔升阻比最大、稳定性与机动性相匹配等设计要求,利用遗传算法搜寻鸭舵的最优外形参数。与初始方案相比,优化方案在升阻比方面提升显著。通过与数值模拟结果对比,该方法对升阻比的预测平均误差为1.94%,精度较高,同时计算量大大降低,验证了其可行性和有效性。 展开更多
关键词 滑翔制导炮弹 气动外形 co-kriging代理模型 计算流体力学 遗传算法 优化设计
下载PDF
Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests 被引量:7
8
作者 Huiyi Su Wenjuan Shen +2 位作者 Jingrui Wang Arshad Ali Mingshi Li 《Forest Ecosystems》 SCIE CSCD 2020年第4期851-870,共20页
Background:Aboveground biomass(AGB)is a fundamental indicator of forest ecosystem productivity and health and hence plays an essential role in evaluating forest carbon reserves and supporting the development of target... Background:Aboveground biomass(AGB)is a fundamental indicator of forest ecosystem productivity and health and hence plays an essential role in evaluating forest carbon reserves and supporting the development of targeted forest management plans.Methods:Here,we proposed a random forest/co-kriging framework that integrates the strengths of machine learning and geostatistical approaches to improve the mapping accuracies of AGB in northern Guangdong Province of China.We used Landsat time-series observations,Advanced Land Observing Satellite(ALOS)Phased Array L-band Synthetic Aperture Radar(PALSAR)data,and National Forest Inventory(NFI)plot measurements,to generate the forest AGB maps at three time points(1992,2002 and 2010)showing the spatio-temporal dynamics of AGB in the subtropical forests in Guangdong,China.Results:The proposed model was capable of mapping forest AGB using spectral,textural,topographical variables and the radar backscatter coefficients in an effective and reliable manner.The root mean square error of the plotlevel AGB validation was between 15.62 and 53.78 t∙ha^(−1),the mean absolute error ranged from 6.54 to 32.32 t∙ha^(−1),the bias ranged from−2.14 to 1.07 t∙ha^(−1),and the relative improvement over the random forest algorithm was between 3.8%and 17.7%.The largest coefficient of determination(0.81)and the smallest mean absolute error(6.54 t∙ha^(−1)were observed in the 1992 AGB map.The spectral saturation effect was minimized by adding the PALSAR data to the modeling variable set in 2010.By adding elevation as a covariable,the co-kriging outperformed the ordinary kriging method for the prediction of the AGB residuals,because co-kriging resulted in better interpolation results in the valleys and plains of the study area.Conclusions:Validation of the three AGB maps with an independent dataset indicated that the random forest/cokriging performed best for AGB prediction,followed by random forest coupled with ordinary kriging(random forest/ordinary kriging),and the random forest model.The proposed random forest/co-kriging framework provides an accurate and reliable method for AGB mapping in subtropical forest regions with complex topography.The resulting AGB maps are suitable for the targeted development of forest management actions to promote carbon sequestration and sustainable forest management in the context of climate change. 展开更多
关键词 Forest aboveground biomass Random forest co-kriging ALOS PALSAR Landsat TM National forest inventory Digital elevation model
下载PDF
Geographically Weighted Regression and Secondary Variables for Mapping of Meteorological Data
9
作者 Ismail Bulent Gundogdu 《Journal of Geodesy and Geomatics Engineering》 2015年第2期63-72,共10页
GA (geostatistical analyst) is an indispensable tool to analyze various and plenty of data in GIS (geographic information system). Spatial distribution is the most effective factor for predicting of meteorological... GA (geostatistical analyst) is an indispensable tool to analyze various and plenty of data in GIS (geographic information system). Spatial distribution is the most effective factor for predicting of meteorological maps at the point of performance or reliability of the model. Generally, classical interpolation methods may not be sufficient to produce accurate maps. GA is more considerable in this state. Secondary variables affect the precious of prediction models especially meteorological data mapping. In this study 245 meteorological data stations have been evaluated to produce precipitation model maps in Turkey. Long term (25 years) mean annual and monthly precipitation data from Turkish State Meteorological Service and elevation, slope and aspect values from DEM (Digital Elevation Model) were registered. OK (Ordinary Kriging), OCK (Ordinary Co-Kriging) and GWR (Geographically Weighted Regression) have been used as a method to compare the models. With the study if there are effects of secondary variables to precipitation models have been illustrated on the prediction maps. Besides comparing statistical values, regional effects of secondary variables have been determined and illustrated on the maps numerically. As a result to define precipitation distribution spatially R2 values between measured and predicted values have been calculated 0.55 for Kriging, 0.67 for OCK and 0.86 for GWR. Cross validation indicated that GWR interpolation yields the smallest prediction error with elevation, slope and aspect. Spatial distribution of meteorological stations is also other important factor for similar studies. 展开更多
关键词 Geostatistical analyst precipitation map ordinary co-kriging geographically weighted regression meteorological data.
下载PDF
基于CFD数值模拟和模型试验的三体船片体位置优化 被引量:1
10
作者 刘志强 刘鑫旺 万德成 《中国造船》 EI CSCD 北大核心 2022年第2期116-125,共10页
论文采用低精度CFD数值计算和高精度模型试验相结合的方法,以总阻力为目标,对Fr=0.27速度工况下的某型三体船的片体位置进行优化。利用拖曳水池对不同片体位置的三体船进行模型试验,获得三体船在不同片体位置下的总阻力性能。使用自主... 论文采用低精度CFD数值计算和高精度模型试验相结合的方法,以总阻力为目标,对Fr=0.27速度工况下的某型三体船的片体位置进行优化。利用拖曳水池对不同片体位置的三体船进行模型试验,获得三体船在不同片体位置下的总阻力性能。使用自主开发的CFD黏流数值求解器naoe-FOAM-SJTU对一定范围内的其他片体位置进行水动力数值计算。根据模型试验和数值计算结果,使用自主开发的船型优化软件OPTShip-SJTU对三体船的片体位置进行优化。通过模型试验与数值方法相结合的方式构建Co-Kriging近似模型,并使所构建的模型融合模型试验的信息,以保证优化结果的可靠性。结果显示,沿船长方向不同的片体位置对三体船总阻力的影响有着明显的变化规律。 展开更多
关键词 三体船 片体优化 数值模拟 naoe-FOAM-SJTU co-kriging OPTShip-SJTU
原文传递
Research on multi-fidelity aerodynamic optimization methods 被引量:11
11
作者 Huang Likeng Gao Zhenghong Zhang Dehu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期279-286,共8页
Constructing high approximation accuracy surrogate model with lower computational cost has great engineering significance. In this paper, using co-Kriging method, an efficient multi-fidelity surrogate model is constru... Constructing high approximation accuracy surrogate model with lower computational cost has great engineering significance. In this paper, using co-Kriging method, an efficient multi-fidelity surrogate model is constructed based on two independent high and low fidelity samples. Co-Kriging method can use a greater quantity of low-fidelity information to enhance the accuracy of a surrogate of the high-fidelity model by modeling the correlation between high and low fidelity model, thus computational cost of building surrogate model can be greatly reduced. A wing-body problem is taken as an example to compare characteristics of co-Kriging multi-fidelity (CKMF) model with traditional Kriging based multi-fidelity (KMF) model. A sampling convergence of the CKMF model and the KMF model is conducted, and an appropriate sampling design is selected through the sampling convergence analysis. The results indicate that CKMF model has higher approximation accuracy with the same high-fidelity samples, and converges at less high-fidelity samples. A wing-body drag reduction optimization design using genetic algorithm is implemented. Satisfying design results are obtained, which validate the feasibility of CKMF model in engineering design. 展开更多
关键词 AERODYNAMICS co-kriging Multi-fidelity OPTIMIZATION Surrogate model
原文传递
多源数据融合方法在大舵角舵效预报上的应用
12
作者 韩琨羽 程细得 +2 位作者 聂鹏 齐波 欧阳旭宇 《中国造船》 EI CSCD 北大核心 2023年第6期250-260,共11页
目前敞水舵水动力性能研究主要从试验和数值模拟两方面展开,由于大舵角工况流场异常复杂,预报精度是难点之一。论文分别采用雷诺平均和分离涡两种数值方法对舵角变化的舵力试验开展数值计算。同时为了平衡预报成本与精度之间的矛盾,融... 目前敞水舵水动力性能研究主要从试验和数值模拟两方面展开,由于大舵角工况流场异常复杂,预报精度是难点之一。论文分别采用雷诺平均和分离涡两种数值方法对舵角变化的舵力试验开展数值计算。同时为了平衡预报成本与精度之间的矛盾,融合敞水试验与数值计算的优点,提出一种基于变可信度近似模型的敞水舵水动力快速预报方法,将少量通过试验获取的高可信度样本与大量通过数值求解得到的低可信度样本融合,构建一种高效的敞水舵水动力变可信度近似模型,并采用试验数据对近似模型的精度进行验证,实现敞水舵水动力的快速预报。 展开更多
关键词 敞水舵 分离涡模拟 变可信度 co-kriging
原文传递
Indicator and Multivariate Geostatistics for Spatial Prediction 被引量:1
13
作者 ZHANG Jingxiong YAO Na 《Geo-Spatial Information Science》 2008年第4期243-246,共4页
There are various occasions where simple, ordinary, and universal kriging techniques may find themselves incapable of performing spatial prediction directly or efficiently. One type of application concerns quantificat... There are various occasions where simple, ordinary, and universal kriging techniques may find themselves incapable of performing spatial prediction directly or efficiently. One type of application concerns quantification of cumulative distribution function (CDF) or probability of occurrences of categorical variables over space. The other is related to optimal use of co-variation inherent to multiple regionalized variables as well as spatial correlation in spatial prediction. This paper extends geostatistics from the realm of kriging with uni-variate and continuous regionalized variables to the territory of indicator and multivariate kriging, where it is of ultimate importance to perform non-parametric estimation of probability distributions and spatial prediction based on co-regionalization and multiple data sources, respectively. 展开更多
关键词 auto- and cross-covariance indicator kriging co-kriging data support BLOCK
原文传递
New Precipitation and Temperature Grids for Northern Patagonia: Advances in Relation to Global Climate Grids
14
作者 Emilio Bianchi Ricardo Villalba +2 位作者 Maximiliano Viale Fleur Couvreux Rocio Marticorena 《Journal of Meteorological Research》 SCIE CSCD 2016年第1期38-52,共15页
Climate data of mean monthly temperature and total monthly precipitation compiled from different sources in northern Patagonia were interpolated to 20-km resolution grids over the period 1997-2010. This northern Patag... Climate data of mean monthly temperature and total monthly precipitation compiled from different sources in northern Patagonia were interpolated to 20-km resolution grids over the period 1997-2010. This northern Patagonian climate grid (NPCG) improves upon previous gridded products in terms of its spatial resolution and number of contributing stations, since it incorporates 218 and 114 precipitation and temper- ature records, respectively. A geostatistical method using surface elevation from a Digital Elevation Model (DEM) as the ancillary variable was used to interpolate station data into even spaced points. The maps provided by NPCG are consistent with the broad spatial and temporal patterns of the northern Patagonian climate, showing a comprehensive representation of the latitudinal and altitudinal gradients in temperature and precipitation, as well as their related patterns of seasonality and continentality. We compared the per- formance of NPCG and various other datasets available to the climate community for northern Patagonia. The grids used for the comparison included those of the Global Precipitation Climatology Project, ERA- Interim, Climate Research Unit (University of East Anglia), and University of Delaware. Based on three statistics that quantitatively assess the spatial coherence of gridded data against available observations (bias, MAE, and RMSE), NPCG outperforms other global grids. NPCG represents a useful tool for understand- ing climate variability in northern Patagonia and a valuable input for regional models of hydrological and ecological processes. Its resolution is optimal for validating data from the general circulation models and working with raster data derived from remote sensing, such as vegetation indices. 展开更多
关键词 northern Patagonia PRECIPITATION temperature co-kriging climate grids Cordillera de los Andes
原文传递
Selecting scale factor of Bayesian multi-fidelity surrogate by minimizing posterior variance
15
作者 Hongyan BU Liming SONG +1 位作者 Zhendong GUO Jun LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第11期59-73,共15页
The Bayesian Multi-Fidelity Surrogate(MFS)proposed by Kennedy and O’Hagan(KOH model)has been widely employed in engineering design,which builds the approximation by decomposing the high-fidelity function into a scale... The Bayesian Multi-Fidelity Surrogate(MFS)proposed by Kennedy and O’Hagan(KOH model)has been widely employed in engineering design,which builds the approximation by decomposing the high-fidelity function into a scaled low-fidelity model plus a discrepancy function.The scale factor before the low-fidelity function,ρ,plays a crucial role in the KOH model.This scale factor is always tuned by the Maximum Likelihood Estimation(MLE).However,recent studies reported that the MLE may sometimes result in MFS of bad accuracy.In this paper,we first present a detailed analysis of why MLE sometimes can lead to MFS of bad accuracy.This is because,the MLE overly emphasizes the variation of discrepancy function but ignores the function waviness when selectingρ.To address the above issue,we propose an alternative approach that choosesρby minimizing the posterior variance of the discrepancy function.Through tests on a one-dimensional function,two high-dimensional functions,and a turbine blade design problem,the proposed approach shows better accuracy than or comparable accuracy to MLE,and the proposed approach is more robust than MLE.Additionally,through a comparative test on the design optimization of a turbine endwall cooling layout,the advantage of the proposed approach is further validated. 展开更多
关键词 co-kriging Gaussian process regression Multi-fidelity surrogate OPTIMIZATION Scale factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部